A selection of favorite quotes collected from Vicki Almstrum, Tony Hoare, Niklaus Wirth, Wan Feijen, and Rajeev Joshi. Bracketed supplemental information after many quotes indicate dates when the statement was spoken or published, translations, or other clarifying information known to the person submitting the quote.

Advice to a promising researcher: "Only do what only you can do."

"The problems of the real world are those that remain when you ignore their known solutions."

"Always design your program as a member of a whole family of programs, including those that are likely to succeed it."

"Avoid operational reasoning like the plague."

"Separate concerns."

"The prisoner falls in love with his chains."

"A programming language is a tool that has a profound influence on our thinking habits."

"I pray daily that more of my fellow programmers may find the means of freeing themselves from the curse of compatibility."

"The program and the correctness proof grow hand in hand."

"Brainpower is by far our scarcest resource."

"In their capacity as a tool, computers will be but a ripple on the surface of our culture. In their capacity as intellectual challenge, they are without precedent in the cultural history of mankind."

"Teaching to unsuspecting youngsters the effective use of formal methods is one of the joys of life because it is so extremely rewarding. Within a few months, they find their way into a new world with a justified degree of confidence that is radically novel for them; within a few months, their concept of intellectual culture has acquired a radically new dimension. To my taste and style, that is what education is about. Universities should not be afraid of teaching radical novelties; on the contrary, it is their calling to welcome the opportunity to do so." ["On the Cruelty of Really Teaching Computing Science," CACM, 32(12), December 1989, page 1404]

"So-called "natural language" is wonderful for the purposes it was created for, such as to be rude in, to tell jokes in, to cheat or to make love in (and Theorists of Literary Criticism can even be content-free in it), but it is hopelessly inadequate when we have to deal unambiguously with situations of great intricacy, situations which unavoidably arise in such activities as legislation, arbitration, mathematics or programming."

"The problems of the real world are those that remain when you ignore their known solutions."

"Many mathematicians derive part of their self-esteem by feeling themselves the proud heirs of a long tradition of rational thinking: I am afraid they idealize their cultural ancestors."

"Teaching to unsuspecting youngsters the effective use of formal methods is one of the joys of life because it is so extremely rewarding. Within a few months, they find their way into a new world with a justified degree of confidence that is radically novel for them; within a few months, their concept of intellectual culture has acquired a radically new dimension. To my taste and style, that is what education is about. Universities should not be afraid of teaching radical novelties; on the contrary, it is their calling to welcome the opportunity to do so." ["On the Cruelty of Really Teaching Computing Science," CACM, 32(12), December 1989, page 1404]

"[1972, Turing award lecture]"

"Aim for brevity while avoiding jargon."

"Don’t compete with me: firstly, I have more experience, and secondly, I have chosen the weapons."

"Do not try to change the world. Give the world the opportunity to change itself." [April 21, 2000]

"While current curricula extensively teach existing mathematics, they pay scant attention to the doing of mathematics, i.e., to the question of how to design and to present solutions. If any attention to these issues is paid at all, they are treated separately: design of solutions, i.e., "problem solving" or "mathematical invention," is viewed as a psychological issue, as a matter of mathematical intuition, while presentation is viewed as a matter of personal style or as an issue of education. Most mathematicians consider psychology and pedagogy as sciences too soft to be respectable, and consequently the subject of how to do mathematics has almost been taboosed." [forward to On the Shape of Mathematical Argument, A. J. M. Van Gasteren, Lecture notes in Computer Science, edited by G. Goos and J. Hartmanns, Springer-Verlag, 1987]

"For me, the first challenge for computing science is to discover how to maintain order in a finite, but very large, discrete universe that is intricately interwoven (and a second, but not less important challenge is how to mould what you have achieved in solving the first problem, into a teachable discipline: it does not suffice to hone your own intellect [that will join you in your grave], you must teach others how to hone theirs. The more you concentrate on these two challenges, the clearer you will see that they are only two sides of the same coin: teaching yourself is discovering what is teachable."

"My hopes of computing science" (EWD 709)

"And even now my first reaction to formulae, written by someone else, is one of repulsion — in particular when an unfamiliar notational convention is used — and when reading an article, my natural reaction is to skip the formulae."

"My hopes of computing science" (EWD 709)