Graphics Rendering Pipeline

Model

Model

Model

(Modeling Transformations)

3D World Scene

3D View Scene

(Viewing Transformations)

Projection

2D Device Scene

2D Image

Rasterization and Viewport Mapping

(NDCS)

(DCS or SCS)
• Coordinate Systems
 – MCS: Modeling Coordinate System
 – WCS: World Coordinate System
 – VCS: Viewer Coordinate System
 – NDCS: Normalized Device Coordinate System
 – DCS or SCS: Device Coordinate System or, equivalently, Screen Coordinate System
Keeping the coordinate systems straight is an important key to understanding a rendering system.

• Pipeline stages: Refine the scene step by step:
 – Convert primitives in the MCS to primitives in the DCS.
 – Add derived information: shading, texture, shadows.
 – Remove invisible primitives.
 – Convert primitives in the DCS to pixels in a raster image.

• Transformations: Coordinate system conversions can be represented with matrix-vector multiplications.
Rendering Primitives

Models are typically composed of a large number of geometric primitives. The only rendering primitives typically supported in hardware are

- Points (single pixels)
- Line segments
- Polygons (usually restricted to convex polygons).

Modeling primitives include these, but also

- Piecewise polynomial (spline) curves
- Piecewise polynomial (spline) surfaces
- Implicit surfaces (quadrics, bobbies, etc)
- Other...

A software renderer may support these modeling primitives directly, or they may be converted into polygonal or linear approximations for hardware rendering.
Algorithms

A number of basic algorithms are needed:

- **Transformation:** convert representations of primitives from one coordinate system to another.
- **Clipping/Hidden Surface Removal:** Remove primitives and parts of primitives that are not visible on the display.
- **Rasterization:** Convert a projected screen-space primitive to a set of pixels.

Later, we will look at some more advanced algorithms:

- **Picking:** Select a 3D object by clicking an input device over a pixel location.
- **Shading and Illumination:** Simulate the interaction of light with a scene.
- **Texturing and Environment Mapping:** Enhancing the realism
- **Animation:** simulate movement by rendering a sequence of frames.
Application Programming Interfaces

- Application Programming Interfaces (APIs) provide access to rendering hardware:
 - Xlib: 2D rasterization.
 - PostScript: 2D transformations, 2D rasterization
 - Phigs+, GL, OpenGL: 3D pipeline
- APIs hide which parts of the rendering are actually implemented in hardware by simulating the missing pieces in software, usually at a loss in performance.
- For 3D interactive applications, we might modify the scene or a model directly or just the viewing information.
- After each modification, usually the images needs to be regenerated.
- We need to consider how to interface to input devices in an asynchronous and device independent fashion. APIs have also been defined for this task; we will be using X11 through Glut, OpenGL optimizer, GTwidgets
Device Independence

In this module, we

- Consider display devices for computer graphics:
 - calligraphic devices
 - raster devices
 - CRTs
 - direct vs. pseudocolor frame buffers
- Discuss the problem of device independence:
 - window-to-viewport mapping
 - normalized device coordinates
Calligraphic and Raster Devices

- Calligraphic display devices draw polygon and line segments directly:
 - plotters
 - direct beam control CRTs
 - laser light projection systems
- Raster display devices represent an image as a regular grid of samples.
 - Each sample is usually called a pixel or, less commonly, a pel.
 - Both are short for picture element.
 - Rendering requires rasterization algorithms to quickly determine a sampled representation of geometric primitives.
How a Monitor Works

- Raster Cathode Ray Tubes (CRTs) are the most common display device today.
 - capable of high resolution
 - good color fidelity
 - high contrast (100:1)
 - high update rates

An electron beam is continually scanned in a regular pattern of horizontal scanlines.

- Raster images are stored in a frame buffer.
- Frame buffers are composed of VRAM (video RAM).
- VRAM is dual-ported memory capable of
 - Random access.
 - Simultaneous high-speed serial output: A built-in serial shift register can output an entire scanline at a high rate synchronized to a pixel clock.

At each pixel location in a scanline, the intensity of the electron beam is modified by the pixel value being shifted synchronously out of the VRAM.
• Color CRTs have three different colors of phosphor and three independent electron guns.
• *Shadow masks* only allow each gun to irradiate one color of phosphor.

• Color is specified either
directly, using three independent intensity channels, or
indirectly, using a color lookup table (LUT).
In the latter case, a color index is stored in the frame buffer.
Window to Viewport Mapping

- Start with 3D scene, but eventually project to 2D scene.
- 2D scene is infinite plane. Device has a finite visible rectangle. What do we do?
- Answer: map rectangular region of 2D device scene to device.
 - Window: rectangular region of interest in scene.
 - Viewport: rectangular region on device.
 - Usually, both rectangles are aligned with the coordinate axes.
• Window point \((x_w, Y_w)\) maps to viewport point \((x_v, y_v)\).

 – Window has corners \((x_{wl}, y_{wb})\) and \((x_{wr}, y_{wt})\);
 Viewport has corners \((x_{vl}, y_{vb})\) and \((x_{vr}, y_{vt})\);
 – Length and height of the window are \(L_w\) and \(H_w\)
 Length and height of the viewport are \(L_v\) and \(H_v\)

• Proportionally map each of the coordinates according to:

\[
\frac{\Delta x_w}{L_w} = \frac{\Delta x_v}{L_v}
\]

\[
\frac{\Delta y_w}{H_w} = \frac{\Delta y_v}{H_v}
\]

• To map \(x_w\) to \(x_v\):

\[
\frac{x_w - x_{wl}}{L_w} = \frac{x_v - x_{vl}}{L_v}
\]

\[
\Rightarrow x_v = \frac{L_v}{L_w} (x_w - x_{wl}) + x_{vl}
\]

and similarly for \(y_v\).
• If $H_w/L_w \neq H_v/L_v$ the image will be distorted.
 These quantities are called the aspect ratios of the window and viewport.
Normalized Device Coordinates

- Where do we specify our viewport?
- Could specify it in device coordinates, BUT, suppose we want to run our program on several different hardware platforms or on different graphic devices.
- Two common conventions for DCS:
 - Origin in the lower left corner, with x to the right and y upward.
 - Origin in the top left corner, with x to the right and y downward.
- Many different resolutions for graphics display devices:
 - Workstations commonly have 1280×1024 frame buffers.
 - A PostScript page is 612×792 points, but 2550×3300 pixels at 300dpi.
 - And so on...
- Aspect ratios may vary...
• If we map directly from WCS to a DCS, then changing our device requires rewriting this mapping (among other changes).
• Instead, use Normalized Device Coordinates (NDC) as an intermediate coordinate system that gets mapped to the device layer.
• Will consider using only a square portion of the device. Windows in WCS will be mapped to viewports that are specified within a unit square in NDC space.
• Map viewports from NDC coordinates to the screen.
Pixels

- **Pixel**: Intensity or color sample.
- **Raster Image**: Rectangular grid of pixels.
- **Rasterization**: Conversion of a primitive’s geometric representation into
 - A set of pixels.
 - An intensity or color for each pixel (*shading, antialiasing*).
- For now, we will assume that the background is white and we need only change the color of selected pixels to black.
Pixel Grids

- **Pixel Centers**: Address pixels by integer coordinates \((i, j)\)
- **Pixel Center Grid**: Set of lines passing through pixel centers.
- **Pixel Domains**: Rectangular semi-open areas surrounding each pixel center:

\[
P_{i,j} = (i - 1/2, i + 1/2) \times (j - 1/2, j + 1/2)
\]

- **Pixel Domain Grid**: Set of lines formed by domain boundaries.
Specifications and Representations

Each rendering primitive (point, line segment, polygon, etc.) needs both

- A geometric specification, usually “calligraphic.”
- A pixel (rasterized) representation.

Standard device-level geometric specifications include:

Point: \(A = (x_A, y_A) \in \mathbb{R}^2. \)

Line Segment: \(\ell(AB) \) specified with two points, \(A \) and \(B \). The line segment \(\ell(AB) \) is the set of all collinear points between point \(A \) and point \(B \).

Polygon: Polygon \(\mathcal{P}(A_1 A_2 \ldots A_n) \) specified with an ordered list of points \(A_1 A_2 \ldots A_n \). A polygon is a region of the plane with a piecewise linear boundary; we connect \(A_n \) to \(A_1 \).

This “list of points” specification is flawed... a more precise definition will be given later.
Line Segments

• Let \(\ell(AB) = \{P \in \mathbb{R}^2 | P = (1 - t)A + tB, t \in [0, 1]\} \)

• Problem: Given a line segment \(\ell(AB) \) specified by two points \(A \) and \(B \),

• Decide: Which pixels to illuminate to represent \(\ell(AB) \).

• Desired properties: Rasterization of line segment should
 1. Appear as straight as possible;
 2. Include pixels whose domains contain \(A \) and \(B \);
 3. Have relatively constant intensity (i.e., all parts should be the same brightness);
 4. Have an intensity per unit length that is independent of slope;
 5. Be symmetric;
 6. Be generated efficiently.
Line Segment Representations

1. Given AB, choose a set of pixels $L_1(AB)$ given by

$$L_1(AB) = \{(i, j) \in \mathbb{Z}^2 | \ell(AB) \cap P_{i,j}\}$$

Unfortunately, this results in a very blotchy, uneven looking line.
2. Given AB, choose a set of pixels $L_2(AB)$ given by

$$L_2(AB) = \begin{cases}
|x_B - x_A| \geq |y_B - y_A| \rightarrow \\
\{ (i, j) \in \mathbb{Z}^2 | (i, j) = (i, [y]), (i, y) \in \ell(AB), y \in \mathbb{R} \} \\
\cup ([x_A], [y_A]) \cup ([x_B], [y_B]).
\end{cases}$$

Where $[z] = \lfloor z + 1/2 \rfloor$, and $\lfloor w \rfloor$ is the greatest integer less than or equal to w.
Line Equation Algorithm

Based on the line equation \(y = mx + b \), we can derive:

```plaintext
LineEquation (int xA, yA, xB, yB)
    float m, b;
    int xi, dx;

    m = (yB - yA)/(xB - xA);
    b = yA - m*xA;
    if (xB - xA > 0 ) then dx=1;
        else dx = -1;
    for xi = xA to xB step dx do
        y = m*xi + b;
        WritePixel( xi, [y] );
endfor
```

Problems:

- One pixel per column so lines of slope \(> 1 \) have gaps
• Vertical lines cause divide by zero

To fix these problems, we need to use $x = m^{-1}(y - b)$ when $m > 1$.
Discrete Differential Analyzer

Observation: Roles of x and y are symmetric...

- Change roles of x and y if $|y_B - y_A| > |x_B - x_A|$

Observation: Multiplication of m inside loop...

- The value of m is constant for all iterations.
- Can reduce computations inside loop:

 y_{i+1} and be computed incrementally from y_i

\[y_{i+1} = m(x_i + 1) + b = y_i + m \]
DDA (int xA, yA, xB, yB)
 int length, dx, dy, i;
 float x, y, xinc, yinc;

 dx = xB - xA;
 dy = yB - yA;

 length = max (|dx| > |dy|);

 xinc = dx/length; # either xinc or yinc is -1 or 1
 yinc = dy/length;

 x = xA; y = yA;
 for i=0 to length do
 WritePixel([x], [y]);
 x += xinc;
 y += yinc;
 endfor
Bresenham's Algorithm

- Completely integer;
- Will assume (at first) that x_A, y_A, x_B, y_B are also integer.
- Only addition, subtraction, and shift in inner loop.
- Originally for a pen plotter.
- "Optimal" in that it picks pixels closest to line, i.e., $L_2(AB)$.
- Assumes $0 \leq (y_B - y_A) \leq (x_B - x_A) \leq 1$ (i.e., slopes between 0 and 1).
- Use reflections and endpoint reversal to get other slopes: 8 cases.
• Suppose we know at step $i - 1$ that pixel $(x_i, y_i) = P_{i-1}$ was chosen. Thus, the line passed between points A and B.

• Slope between 0 and 1 ⇒
 line must pass between points C and D at next step ⇒
 $E_i = (x_i + 1, y_i)$ and $N E_i = (x_i + 1, y_i + 1)$ are only choices for next pixel.

• If M_i above line, choose E_i;
• If M_i below line, choose $N \ E_i$.
Implicit representations for line:

\[F(x, y) = (2\Delta y) x + (-2\Delta x) y + 2\Delta xb = 0 \]

where

\[\Delta x = x_B - x_A \]
\[\Delta y = y_B - y_A \]
\[b = y_A - \frac{\Delta y}{\Delta x} x_A \Rightarrow S = 2\Delta xy_A - 2\Delta yx_A \]

Note that

1. \(F(x, y) < 0 \Rightarrow (x, y) \) above line.
2. \(F(x, y) > 0 \Rightarrow (x, y) \) below line.
3. \(Q, R, S \) are all integers.

The mystery factor of 2 will be explained later.
• Look at $F(M_i)$. Remember, F is 0 if the point is on the line:
 - $F(M_i) < 0 \Rightarrow M_i$ above line \Rightarrow choose $P_i = E_i$.
 - $F(M_i) > 0 \Rightarrow M_i$ below line \Rightarrow choose $P_i = N E_i$.
 - $F(M_i) = 0 \Rightarrow$ arbitrary choice, consider choice of pixel domains...
• We’ll use $d_i = F(M_i)$ as an decision variable.
• Can compute d_i incrementally with integer arithmetic.
• At each step of algorithm, we know P_{i-1} and d_i...

• Want to choose P_i and compute d_{i+1}

• Note that

$$d_i = F(M_i) = F(x_{i-1} + 1, y_{i-1} + 1/2)$$
$$= Q \cdot (x_{i-1} + 1) + R \cdot (y_{i-1} + 1/2) + S$$

• If E_i is chosen then

$$d_{i+1} = F(x_{i-1} + 2, y_{i-1} + 1/2)$$
$$= Q \cdot (x_{i-1} + 2) + R \cdot (y_{i-1} + 1/2) + S$$
$$= d_i + Q$$

• If N E_i is chosen then

$$d_{i+1} = F(x_{i-1} + 2, y_{i-1} + 1/2 + 1)$$
$$= Q \cdot (x_{i-1} + 2) + R \cdot (y_{i-1} + 1/2 + 1) + S$$
$$= d_i + Q + R$$
Initially, we have

\[d_1 = F(x_A + 1, y_A + 1/2) \]

\[= Qx_A + Ry_A + S + Q + R/2 \]

\[= F(x_A, y_A) + Q + R/2 \]

\[= Q + R/2 \]

Note that \(F(x_A, y_A) = 0 \) since \((x_A, y_A) \in \ell(AB) \).

Why the mysterious factor of 2?
It makes everything integer.
Bresenham (int xA, yA, xB, yB)
 int d, dx, dy, xi, yi
 int incE, incNE

 dx = xB - xA
 dy = yB - yA
 incE = dy<<1 /* Q */
 incNE = incE - dx<<1; /* Q + R */
 d = incE - dx /* Q + R/2 */
 xi = xA; yi = yA
 WritePixel(xi, yi)
 while (xi < xB)
 xi++
 if (d < 0) then /* choose E */
 d += incE
 else /* choose NE */
 d += incNE
 yi++
 endif
WritePixel(xi, yi)
endwhile
• Some asymmetries (choice when ==).
• Did we meet our goals?
 1. Straight as possible: yes, but depends on metric.
 2. Correct termination.
 3. Even distribution of intensity: yes, more or less, but:
 4. Intensity varies as function of slope.
 – Can’t do better without gray scale.
 – Worst case: diagonal compared to horizontal (same number of pixels, but \(\sqrt{2} \) longer line).
 5. Careful coding required to achieve some form of symmetry.
 6. Fast! (if integer math fast ...)
• Interaction with clipping?
• Subpixel positioning of endpoints?
• Variations that look ahead more than one pixel at once...
• Variations that compute from both end of the line at once...
• Similar algorithms for circles, ellipses, ...
 (8 fold symmetry for circles)