Pixels

- **Pixel**: Intensity or color sample.
- **Raster Image**: Rectangular grid of pixels.
- **Rasterization**: Conversion of a primitive’s geometric representation into
 - A set of pixels.
 - An intensity or color for each pixel (*shading, antialiasing*).
- For now, we will assume that the background is white and we need only change the color of selected pixels to black.
Pixel Grids

- **Pixel Centers**: Address pixels by integer coordinates \((i, j)\)
- **Pixel Center Grid**: Set of lines passing through pixel centers.
- **Pixel Domains**: Rectangular semi-open areas surrounding each pixel center:
 \[
P_{i,j} = (i - 1/2, i + 1/2) \times (j - 1/2, j + 1/2)
 \]
- **Pixel Domain Grid**: Set of lines formed by domain boundaries.
Specifications and Representations

Each rendering primitive (point, line segment, polygon, etc.) needs both

- A geometric specification, usually “calligraphic.”
- A pixel (rasterized) representation.

Standard device-level geometric specifications include:

Point: \(A = (x_A, y_A) \in \mathbb{R}^2 \).

Line Segment: \(\ell(AB) \) specified with two points, \(A \) and \(B \). The line segment \(\ell(AB) \) is the set of all collinear points between point \(A \) and point \(B \).

Polygon: Polygon \(\mathcal{P}(A_1A_2\ldots A_n) \) specified with an ordered list of points \(A_1A_2\ldots A_n \). A polygon is a region of the plane with a piecewise linear boundary; we connect \(A_n \) to \(A_1 \).

This “list of points” specification is flawed... a more precise definition will be given later.
Line Segments

• Let $\ell(AB) = \{ P \in \mathbb{R}^2 | P = (1 - t)A + tB, t \in [0, 1] \}$

• Problem: Given a line segment $\ell(AB)$ specified by two points A and B,

• Decide: Which pixels to illuminate to represent $\ell(AB)$.

• Desired properties: Rasterization of line segment should
 1. Appear as straight as possible;
 2. Include pixels whose domains contain A and B;
 3. Have relatively constant intensity (i.e., all parts should be the same brightness);
 4. Have an intensity per unit length that is independent of slope;
 5. Be symmetric;
 6. Be generated efficiently.
Line Segment Representations

1. Given AB, choose a set of pixels $L_1(AB)$ given by

$$L_1(AB) = \{(i, j) \in \mathbb{Z}^2 | \ell(AB) \cap P_{i,j}\}$$

Unfortunately, this results in a very blotchy, uneven looking line.
2. Given AB, choose a set of pixels $L_2(AB)$ given by

$$L_2(AB) = \begin{cases}
|x_B - x_A| \geq |y_B - y_A| & \rightarrow \\
(\{(i, j) \in \mathbb{Z}^2 | (i, j) = (i, [y]), (i, y) \in \ell(AB), y \in \mathbb{R}\} \\
\cup([x_A], [y_A]) \cup ([x_B], [y_B])).
\end{cases}$$

$$L_2(AB) = \begin{cases}
|x_B - x_A| < |y_B - y_A| & \rightarrow \\
(\{(i, j) \in \mathbb{Z}^2 | (i, j) = ([x], j), (x, j) \in \ell(AB), x \in \mathbb{R}\} \\
\cup([x_A], [y_A]) \cup ([x_B], [y_B])).
\end{cases}$$

Where $[z] = \lfloor z + 1/2 \rfloor$, and $\lfloor w \rfloor$ is the greatest integer less than or equal to w.
Line Equation Algorithm

Based on the line equation \(y = m \cdot x + b \), we can derive:

LineEquation (int xA, yA, xB, yB)

 float m, b;
 int xi, dx;

 m = (yB - yA)/(xB - xA);
 b = yA - m*xA;
 if (xB - xA > 0) then dx=1;
 else dx = -1;
 for xi = xA to xB step dx do
 y = m*xi + b;
 WritePixel(xi, [y]);
 endfor

Problems:

- One pixel per column so lines of slope > 1 have gaps
• Vertical lines cause divide by zero

To fix these problems, we need to use $x = m^{-1}(y - b)$ when $m > 1$.
Discrete Differential Analyzer

Observation: Roles of x and y are symmetric...

- Change roles of x and y if $|y_B - y_A| > |x_B - x_A|$

Observation: Multiplication of m inside loop...

- The value of m is constant for all iterations.
- Can reduce computations inside loop:
 \[y_{i+1} \text{ and be computed incrementally from } y_i \]

\[y_{i+1} = m(x_i + 1) + b = y_i + m \]
DDA (int xA, yA, xB, yB)
 int length, dx, dy, i;
 float x, y, xinc, yinc;

 dx = xB - xA;
 dy = yB - yA;

 length = max (|dx| > |dy|);

 xinc = dx/length; # either xinc or yinc is -1 or 1
 yinc = dy/length;

 x = xA; y = yA;
 for i=0 to length do
 WritePixel([x], [y]);
 x += xinc;
 y += yinc;
 endfor
Bresenham’s Algorithm

- Completely integer;
- Will assume (at first) that x_A, y_A, x_B, y_B are also integer.
- Only addition, subtraction, and shift in inner loop.
- Originally for a pen plotter.
- “Optimal” in that it picks pixels closest to line, i.e., $L_2(AB)$.
- Assumes $0 \leq (y_B - y_A) \leq (x_B - x_A) \leq 1$ (i.e., slopes between 0 and 1).
- Use reflections and endpoint reversal to get other slopes: 8 cases.
• Suppose we know at step \(i - 1 \) that pixel \((x_i, y_i) = P_{i-1}\) was chosen. Thus, the line passed between points \(A \) and \(B \).

• Slope between 0 and 1 \(\Rightarrow \)
 line must pass between points \(C \) and \(D \) at next step \(\Rightarrow \)
 \(E_i = (x_i + 1, y_i) \) and \(N E_i = (x_i + 1, y_i + 1) \) are only choices for next pixel.

• If \(M_i \) above line, choose \(E_i \);
• If M_i below line, choose $N E_i$.
• Implicit representations for line:

\[
y = \frac{\Delta y}{\Delta x} x + b
\]

\[
F(x, y) = \left(\frac{2 \Delta y}{Q}\right) x + \left(-\frac{2 \Delta x}{R}\right) y + \frac{2 \Delta x b}{S} = 0
\]

where

\[
\Delta x = x_B - x_A \\
\Delta y = y_B - y_A \\
b = y_A - \frac{\Delta y}{\Delta x} x_A \Rightarrow S = 2 \Delta xy_A - 2 \Delta yx_A
\]

Note that
1. \(F(x, y) < 0 \Rightarrow (x, y) \) above line.
2. \(F(x, y) > 0 \Rightarrow (x, y) \) below line.
3. \(Q, R, S \) are all integers.

• The mystery factor of 2 will be explained later.
• Look at $F(M_i)$. Remember, F is 0 if the point is on the line:
 - $F(M_i) < 0 \Rightarrow M_i$ above line \Rightarrow choose $P_i = E_i$.
 - $F(M_i) > 0 \Rightarrow M_i$ below line \Rightarrow choose $P_i = NE_i$.
 - $F(M_i) = 0 \Rightarrow$ arbitrary choice, consider choice of pixel domains...

• We’ll use $d_i = F(M_i)$ as an decision variable.

• Can compute d_i incrementally with integer arithmetic.
• At each step of algorithm, we know P_{i-1} and d_i...
• Want to choose P_i and compute d_{i+1}
• Note that

\[d_i = F(M_i) = F(x_{i-1} + 1, y_{i-1} + 1/2) = Q \cdot (x_{i-1} + 1) + R \cdot (y_{i-1} + 1/2) + S \]

• If E_i is chosen then

\[d_{i+1} = F(x_{i-1} + 2, y_{i-1} + 1/2) = Q \cdot (x_{i-1} + 2) + R \cdot (y_{i-1} + 1/2) + S \]
\[= d_i + Q \]

• If $N \ E_i$ is chosen then

\[d_{i+1} = F(x_{i-1} + 2, y_{i-1} + 1/2 + 1) = Q \cdot (x_{i-1} + 2) + R \cdot (y_{i-1} + 1/2 + 1) + S \]
\[= d_i + Q + R \]
• Initially, we have

\[d_1 = F(x_A + 1, y_A + 1/2) \]
\[= Qx_A + Ry_A + S + Q + R/2 \]
\[= F(x_A, y_A) + Q + R/2 \]
\[= Q + R/2 \]

• Note that \(F(x_A, y_A) = 0 \) since \((x_A, y_A) \in \ell(AB)\).

• Why the mysterious factor of 2? It makes everything integer.
Bresenham (int xA, yA, xB, yB)
 int d, dx, dy, xi, yi
 int incE, incNE

 dx = xB - xA
 dy = yB - yA
 incE = dy<<1 /* Q */
 incNE = incE - dx<<1; /* Q + R */
 d = incE - dx /* Q + R/2 */
 xi = xA; yi = yA
 WritePixel(xi, yi)
 while (xi < xB)
 xi++
 if (d < 0) then /* choose E */
 d += incE
 else /* choose NE */
 d += incNE
 yi++
 endif
WritePixel(xi, yi)
endwhile
• Some asymmetries (choice when ==).
• Did we meet our goals?
 1. Straight as possible: yes, but depends on metric.
 2. Correct termination.
 3. Even distribution of intensity: yes, more or less, but:
 4. Intensity varies as function of slope.
 – Can’t do better without gray scale.
 – Worst case: diagonal compared to horizontal (same number of pixels, but $\sqrt{2}$ longer line).
 5. Careful coding required to achieve some form of symmetry.
 6. Fast! (if integer math fast ...)
• Interaction with clipping?
• Subpixel positioning of endpoints?
• Variations that look ahead more than one pixel at once...
• Variations that compute from both end of the line at once...
• Similar algorithms for circles, ellipses, ...
 (8 fold symmetry for circles)
Reading Assignment and News

Chapter 2 pages 37 - 74, of Recommended Text.

(Recommended Text: Interactive Computer Graphics, by Edward Angel, 3rd edition, Addison-Wesley)

On Wednesday September 3 (tomorrow) Peter Djeu shall conduct a recitation class from 2:30pm - 4:00pm on OpenGL programming and describe our programming environment for all the Project Assignments.

Please also track the News section of the Course Web Pages for the most recent Announcements related to this course.

(http://www.cs.utexas.edu/users/bajaj/graphics23/cs354/)