Program Sketch for Ray Tracing

program raytrace
var lsou; (* intensity of light source *)
back; (* background intensity *)
ambi; (* ambient light intensity *)
depth; (* depth of ray tree consisting of multiple
reflection/refraction paths *)

ray = record (* ray x = a + ti
 point: (a, b, c) y = b + tj
 direction: (i, j, k) z = c + tk *)
end;
r: ray;

function intensity (r); (* intensity = spec + refr +dull
 spec = specular reflection component
 refr = refraction component
 dull = non-reflecting, non refracting
 component *)
 L: unit vector pointing to light source
 N: unit surface normal
 V: unit viewing vector
 Objects [1...n] (* list of n objects in scene *)
 Ka [1...n] (* ambient reflectivity factor for each object *)
 Ks [1...n] (* specular reflectivity factor for each object *)
 Kr [1...n] (* refractivity index for each object *)
 Kd [1...n] (* diffuse reflectivity factor for each object *)
 ns [1...n] (* shininess factor for each object *)
 (* Additional Comments: Ka[j] can be anything. For a transparent object,
 Kd[j]=0 and
 Ks[j]+kr[j]=1 i.e. partly reflecting + partly refracting
 For an opaque object Kr[j]=0, Ks[j] and Kd[j] can be anything
 as no simple relation between them *)

function intensity(r: ray): rgb
var flec, frac: ray; spec, refin, dull: rgb;
begin
 depth := depth +1
 if depth >5 then intensity :=back
 else
 begin (* label 1 *)
 check ray r for intersection with all objects in scene
 if no intersection
 then if r parallel to L
 then intensity :=lsou
 else intensity :=back
 else
 begin (* label2 *)
 Take closest intersection which is object[j]
 compute normal N at the intersection point
 end;
 end (* label 1 *)
end;
if $K_{s}[j] > 0$ (* non-zero specular reflectivity *)
then begin
 compute reflection ray flec;
 spec := $K_{s}[j] \times \text{intensity(flec)} \times (r \cdot V)^{n_{s}[j]}$;
end
else spec := 0;
if ($K_{r}[j] > 0$) (* non-zero refractivity *)
then begin
 compute refraction ray frac;
 refr := $K_{r}[j] \times \text{intensity(frac)}$;
end
else refr := 0;
check for shadow;
if shadow
 then dull := $K_{a}[j] \times \text{ambi}$
else dull := $K_{d}[j] \times \text{lso} \times N \cdot L + K_{a}[j] \times \text{ambi}$;
intensity := spec + refr + dull;
end (* label2 *)
end (* label 1 *)
depth := depth - 1
end (* function *).

begin (* raytrace *)
 for each pixel P of projection viewport in raster order
 begin
 r = unit ray emanating from viewer through P; V = r;
 set intensity(r) to the frame buffer pixel corresponding to P
 end
end (*raytrace *)