TRIPS: Single Chip Teraflop Computing

TRIPS Prototype System Architecture

TRIPS Chip Floorplan

- IBM CU-11 process (130nm)
- 18x18 mm chip area
- 533MHz target clock rate
- 2 16-wide grid processors
- 16 GFlops/ops peak
- 1MB on-chip memory
- 2GB DRAM per TRIPS chip
- On-board FPGA for expansion
- PowerPC 440GP as controller

New TRIPS Technologies

Grid Processor Cores: Technologically scalable, adaptive high performance for signal processing and commercial apps.

Non Uniform Cache Architectures: Automatically adapts to working set of applications, delivering stable performance.

Static-Placement Dynamic Execution Compilation: Techniques for program optimization for scalable architectures.

Application Adaptivity: Library and compiler support for applications to run on multiple platforms and environments.

Impact: High Performance and Adaptivity

Scalable Commercial Performance: 500 GIPS/chip in a 35 nanometer design, 4 GIPS/chip (sustained) in a 130nm prototype.

High performance signal processing: 5 Teraflops (peak) per chip in a 35 nanometer implementation, 32 GFLOPS in a 130nm prototype.

Large economies of scale: Merge the desktop, HPC, DSP, and embedded markets into a single family of TRIPS implementations by 2010.

Timeline

- **TRIPS Phase 2**
 - '03
 - '04
 - '05
 - **XTRIPS**
 - '06
 - '07

- TRIPS chip design
- TRIPS chip/board fab
- Hyperblock compiler
- Streaming compiler back-end
- System Evaluation
- Defense Acceleration Kit

The University of Texas at Austin/IBM Austin Research Laboratory: PIs S. Keckler, D. Burger, and K. McKinley