Nondeterministic Finite State Machines

Read K & S 2.2, 2.3
Read Supplementary Materials: Regular Languages and Finite State Machines: Proof of the Equivalence of Nondeterministic and Deterministic FSAs.
Do Homework 6.

Definition of a Nondeterministic Finite State Machine (NDFSM/NFA)

\[M = (K, \Sigma, \Delta, s, F) \]

- **\(K \)** is a finite set of states
- **\(\Sigma \)** is an alphabet
- **\(s \in K \)** is the initial state
- **\(F \subseteq K \)** is the set of final states, and
- **\(\Delta \)** is the transition relation. It is a finite subset of
 \[(K \times (\Sigma \cup \{\varepsilon\})) \times K \]
 i.e., each element of \(\Delta \) contains:
 - a configuration (state, input symbol or \(\varepsilon \)), and a new state.

\(M \) accepts a string \(w \) if there exists some path along which \(w \) drives \(M \) to some element of \(F \).

The language accepted by \(M \), denoted \(L(M) \), is the set of all strings accepted by \(M \), where computation is defined analogously to DFSMs.

A Nondeterministic FSA

\[L = \{ w : \text{there is a symbol } a \in \Sigma \text{ not appearing in } w \} \]

The idea is to guess (nondeterministically) which character will be the one that doesn't appear.

Another Nondeterministic FSA

\[L_1 = \{ w : \text{aa occurs in } w \} \]
\[L_2 = \{ x : \text{bb occurs in } x \} \]
\[L_3 = \{ y : \in L_1 \text{ or } L_2 \} \]

\(M_1 = \)

\[M_2 = \]

\[M_3 = \]
Analyzing Nondeterministic FSAs

Does this FSA accept: baaba
Remember: we just have to find one accepting path.

Nondeterministic and Deterministic FSAs

Clearly, \(\{\text{Languages accepted by a DFSA}\} \subseteq \{\text{Languages accepted by a NDFSA}\} \)
(Just treat \(\delta \) as \(\Delta \))

More interestingly, Theorem: For each NDFSA, there is an equivalent DFSA.
Proof: By construction

Another Nondeterministic Example

\(b^* (b(a \cup c)c \cup b(a \cup b) (c \cup \varepsilon))^* b \)
Dealing with ε Transitions

$E(q) = \{ p \in K : (q,w) \vdash^*_M (p, w) \}$. $E(q)$ is the closure of $\{q\}$ under the relation $\{(p,r) : \text{there is a transition } (p, \varepsilon, r) \in \Delta\}$.

An algorithm to compute $E(q)$:

Defining the Deterministic FSA

Given a NDFSA $M = (K, \Sigma, \Delta, s, F)$, we construct $M' = (K', \Sigma, \delta', s', F')$, where

- $K' = 2^K$
- $s' = E(s)$
- $F' = \{ Q \subseteq K : Q \cap F \neq \emptyset \}$
- $\delta'(Q, a) = \bigcup \{ E(p) : p \in K \text{ and } (q, a, p) \in \Delta \text{ for some } q \in Q \}$

Example: computing δ' for the missing letter machine

$s' = \{ q0, q1, q2, q3 \}$

$\delta' = \{ ((q0, q1, q2, q3), a, \{ q2, q3 \}), ((q0, q1, q2, q3), b, \{ q1, q3 \}), ((q0, q1, q2, q3), c, \{ q1, q2 \}), ((q1, q2), a, \{ q2 \}), ((q1, q2), b, \{ q1 \}), ((q1, q2), c, \{ q1, q2 \}), ((q1, q3), a, \{ q3 \}), ((q1, q3), b, \{ q1, q3 \}), ((q1, q3), c, \{ q1 \}), ((q2, q3), a, \{ q2, q3 \}), ((q2, q3), b, \{ q3 \}), ((q2, q3), c, \{ q2 \}), ((q1), b, \{ q1 \}), ((q1), c, \{ q1 \}), ((q2), a, \{ q2 \}), ((q2), c, \{ q2 \}), ((q3), a, \{ q3 \}), ((q3), b, \{ q3 \}) \}$
An Algorithm for Constructing the Deterministic FSA

1. Compute the \(E(q) \) s:
2. Compute \(s' = E(s) \)
3. Compute \(\delta' \):
 \[
 \delta'(Q, a) = \cup \{ E(p) : p \in K \text{ and } (q, a, p) \in \Delta \text{ for some } q \in Q \}
 \]
4. Compute \(K' = \text{a subset of } 2^K \)
5. Compute \(F' = \{ Q \in K' : Q \cap F \neq \emptyset \} \)

An Example - The Or Machine

\(L_1 = \{ w : \text{aa occurs in } w \} \)
\(L_2 = \{ x : \text{bb occurs in } x \} \)
\(L_3 = \{ y : y \in L_1 \text{ or } L_2 \} \)

Another Example

\(b^* (b(a \cup c)c \cup b(a \cup b)(c \cup \varepsilon))^* b \)
Sometimes the Number of States Grows Exponentially

Example: The missing letter machine, with $|\Sigma| = n$

No. of states after 0 chars: 1

No. of new states after 1 char: $\binom{n}{n-1} = n$

No. of new states after 2 chars: $\binom{n}{n-2} = n(n-1)/2$

No. of new states after 3 chars: $\binom{n}{n-3} = n(n-1)(n-2)/6$

Total number of states after n chars: 2^n

What If The Original FSA is Deterministic?

$M = (Q, \Sigma, \delta, q_0, F)$

1. Compute the $E(q)$s:
2. $s' = E(q_0) = \emptyset$
3. Compute δ'
 - $\delta'(\{q_0\}, \text{odd}, \{q_1\})$
 - $\delta'(\{q_0\}, \text{even}, \{q_0\})$
 - $\delta'(\{q_1\}, \text{odd}, \{q_1\})$
 - $\delta'(\{q_1\}, \text{even}, \{q_0\})$
4. $K' = \{\{q_0\}, \{q_1\}\}$
5. $F' = \{\{q_1\}\}$

$M' = M$

The real meaning of “determinism”

A FSA is **deterministic** if, for each input and state, there is at most one possible transition.

DFSAs are always deterministic. Why?

NFSAs can be deterministic (even with ε-transitions and implicit dead states), but the formalism allows nondeterminism, in general.

Determinism implies uniquely defined machine behavior.