1. Assume a finite domain that includes just the specific cities mentioned here. Let R be the reflexive, symmetric, transitive closure of:
 - (Austin, Dallas), (Dallas, Houston), (Dallas, Amarillo), (Austin, San Marcos),
 - (Philadelphia, Pittsburgh), (Philadelphia, Paoli), (Paoli, Scranton),
 - (San Francisco, Los Angeles), (Los Angeles, Long Beach), (Long Beach, Carmel)
(a) Draw R as a graph.
(b) List the elements of the partition defined by R on its domain.

2. Let R be a relation on the set of positive integers. Define R as follows:
\[\{(a, b) : (a \mod 2) = (b \mod 2)\} \] In other words, $R(a, b)$ iff a and b have the same remainder when divided by 2.
(a) Consider the following example integers: 1, 2, 3, 4, 5, 6. Draw the subset of R involving just these values as a graph.
(b) How many elements are there in the partition that R defines on the positive integers?
(c) List the elements of that partition and show some example elements.

3. Consider the language L, over the alphabet $\Sigma = \{a, b\}$, defined by the regular expression
\[a^* (b \cup \varepsilon) a^* \]
Let R be a relation on Σ^*, defined as follows:
$R(x, y)$ iff both x and y are in L or neither x nor y is in L. In other words, $R(x, y)$ if x and y have identical status with respect to L.
(a) Consider the following example elements of Σ^*: ε, b, aa, bb, aabaaa, bab, bbaabb. Draw the subset of R involving just these values as a graph.
(b) How many elements are there in the partition that R defines on Σ^*?
(c) List the elements of that partition and show some example elements.

Solutions

1. (b) [cities in Texas], [cities in Pennsylvania], [cities in California]

2. (b) Two
 (c) [even integers] Examples: 2, 4, 6, 106
 [odd integers] Examples: 1, 3, 5, 17, 11679

3. (a) (Hint: L is the language of strings with no more than one b.)
 (b) Two
 (c) [strings in L] Examples: ε, aa, b, aabaaa
 [strings not in L] Examples: bb, bbaabb, bab