Unreliable Failure Detectors for Reliable Distributed Systems

A different approach
- Augment the asynchronous model with an unreliable failure detector for crash failures
- Define failure detectors in terms of abstract properties, not specific implementations
- Identify classes of failure detectors that allow to solve Consensus

The Model

General
- asynchronous system
- processes fail by crashing
- a failed process does not recover

Failure Detectors
- outputs set of processes that it currently suspects to have crashed
- the set may be different for different processes

Completeness

Strong Completeness: Eventually every process that crashes is permanently suspected by every correct process

Weak Completeness: Eventually every process that crashes is permanently suspected by some correct process
Accuracy

Strong Accuracy
No correct process is ever suspected

Weak Accuracy
Some correct process is never suspected

Accuracy

Strong Accuracy
No correct process is ever suspected

Weak Accuracy
Some correct process is never suspected

Eventual Strong Accuracy
There is a time after which no correct process is ever suspected

Eventual Weak Accuracy
There is a time after which some correct process is never suspected

Failure detectors

<table>
<thead>
<tr>
<th>Completeness</th>
<th>Accuracy</th>
<th>Eventual strong</th>
<th>Eventual weak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong</td>
<td>Perfect P</td>
<td>♦</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strong S</td>
<td>♦P</td>
<td>♦S</td>
</tr>
<tr>
<td>Weak</td>
<td>Quasi Q</td>
<td>♦Q</td>
<td>♦W</td>
</tr>
<tr>
<td></td>
<td>Weak W</td>
<td>♦</td>
<td></td>
</tr>
</tbody>
</table>

Reducibility

$T_D \rightarrow D'$ transforms failure detector D into failure detector D'

If we can transform D into D' then we say that D is stronger than D' ($D \geq D'$) and that D' is reducible to D.

If $D \geq D'$ and $D' \geq D$ then we say that D and D' are equivalent: $D \equiv D'$
Simplify, Simplify!

All weakly complete failure detectors are reducible to strongly complete failure detectors

\[P \geq Q, \quad S \geq W, \quad \diamond P \geq \diamond Q, \quad \diamond S \geq \diamond W \]

Simplify, Simplify!

All weakly complete failure detectors are reducible to strongly complete failure detectors

\[P \geq Q, \quad S \geq W, \quad \diamond P \geq \diamond Q, \quad \diamond S \geq \diamond W \]

All strongly complete failure detectors are reducible to weakly complete failure detectors (!)

\[Q \geq P, \quad W \geq S, \quad \diamond Q \geq \diamond P, \quad \diamond W \geq \diamond S \]

Weakly and strongly complete failure detectors are equivalent!

From Weak Completeness to Strong Completeness

Every process \(p \) executes the following:

\[
\text{output}_p := 0 \\
\text{cobegin} \\
\quad \text{|| Task 1: repeat forever} \\
\quad \quad \{ p \text{ queries its local failure detector module } \mathcal{D}_p \} \\
\quad \quad \text{suspects}_p := \mathcal{D}_p \\
\quad \quad \text{send } \langle p, \text{suspects}_p \rangle \text{ to all} \\
\quad \text{|| Task 2: when receive}(q, \text{suspects}_q) \text{ from some } q \\
\quad \quad \text{output}_p := (\text{output}_p \cup \text{suspects}_p) - \{q\} \\
\text{coend}
\]

The Theorems

Theorem 1 In an asynchronous system with \(W \), consensus can be solved as long as \(f \leq n-1 \)
The Theorems

Theorem 1 In an asynchronous system with W, consensus can be solved as long as $f < n/2$

Theorem 2 There is no f-resilient consensus protocol using $\diamond P$ for $f > n/2$

Theorem 3 In asynchronous systems in which processes can use $\diamond W$, consensus can be solved as long as $f < n/2$

Theorem 4 A failure detector can solve consensus only if it satisfies weak completeness and eventual weak accuracy—i.e., $\diamond W$ is the weakest failure detector that can solve consensus.

Solving consensus using S

S: Strong Completeness, Weak Accuracy

☐ at least some correct process c is never suspected

❖ Each process p has its own failure detector

❖ Input values are chosen from the set {0,1}
Notation

We introduce the operators \odot, \star, \oplus

They operate element-wise on vectors whose entries have values from the set $\{0, 1, \perp\}$

$\mathbf{v} \odot \perp = \perp \odot \mathbf{v} = \mathbf{v} = \mathbf{v} \odot \mathbf{v} = \mathbf{v}$

$\mathbf{v} \star \perp = \perp \star \mathbf{v} = \mathbf{v} = \mathbf{v} \star \mathbf{v} = \mathbf{v}$

$\mathbf{v} \oplus \perp = \perp \oplus \mathbf{v} = \mathbf{v} = \mathbf{v} \oplus \mathbf{v} = \mathbf{v}$

$\mathbf{v} \& \perp = \perp \& \mathbf{v} = \mathbf{v} = \mathbf{v} \& \mathbf{v} = \mathbf{v}$

$\mathbf{v} \oplus \mathbf{v} = \mathbf{v} \perp \& \mathbf{v} = \mathbf{v} \& \mathbf{v} = \mathbf{v}$

$\mathbf{v} \oplus \mathbf{v} = \mathbf{v} \& \mathbf{v} = \mathbf{v} \& \mathbf{v} = \mathbf{v}$

Given two vectors A and B, we write $A \leq B$ if $A[i] \neq \perp$ implies $B[i] \neq \perp$

Solving Consensus using any $D \in S$

1: $V_p := (\perp, \ldots, \ldots, \perp, \ldots, \ldots)$ (p: estimate of the proposed values)
2: $\Delta_p := (\perp, \ldots, \ldots, \perp, \ldots, \ldots)$ (asynchronous rounds $r_p, 1 \leq r_p \leq n-1$)
3: {phase 1}
4: for $r_p := 1$ to $n-1$
5: send (r_p, Δ_p, p) to all
6: wait until $[V_q \in p \text{ received } (r_p, \Delta_p, q) \text{ or } q \in D_p]$ (query the failure detector)
7: $O_p := V_p$
8: $V_p := V_p \oplus (\bigoplus_v \text{ received } V_q)$
9: $\Delta_p := V_p \oplus O_p$ (value is only echoed the first time it is seen)
10: \{phase 2\}
11: send (r_p, V_p, p) to all
12: wait until $[V_q \in p \text{ received } (r_p, V_p, q) \text{ or } q \in D_p]$ (computes the "intersection", including V_p)
13: $V_p := \bigcap_v \text{ received } V_q$
14: \{phase 3\}
15: decide on leftmost non-\perp coordinate of V_p

A useful Lemma

Lemma 1 After phase 1 is complete, $V_p \leq V_p$ for all processes p that complete phase 1

Proof We show that $V_p[i] = v_i \& \perp \neq \perp \Rightarrow \forall p: V_p[i] = v_i$

Let r be the first round when c sees v_i

\[r \leq n - 2 \]

- c will send to all Δ_p with v_i in round r

- By weak accuracy, all correct processes receive v_i in round r

\[r = n - 1 \]

- v_i has been forwarded $n-1$ times: every other process has seen v_i

A useful Lemma

Lemma 1 After phase 1 is complete, $V_p \leq V_p$ for all processes p that complete phase 1

Proof We show that $V_p[i] = v_i \& \perp \neq \perp \Rightarrow \forall p: V_p[i] = v_i$

Let r be the first round when c sees v_i

\[r \leq n - 2 \]

- c will send to all Δ_p with v_i in round r

- By weak accuracy, all correct processes receive v_i in round r

\[r = n - 1 \]

- v_i has been forwarded $n-1$ times: every other process has seen v_i
Two additional cool lemmas

1. $V_p = (\perp, \ldots, \perp, V_p, \ldots, \perp)$ (p's estimate of the proposed values)
2. $V_p = (\perp, \ldots, \perp, V_p, \ldots, \perp)$
3. (Phase 1) $V_p = (\perp, \ldots, \perp, V_p, \ldots, \perp)$
4. for $r_p = 1$ to $n-1$
5. send (r_p, V_p, p) to all
6. wait until (V_p, V_q, q) or $q \in D_p$
7. $O_p = V_p$
8. $V_p \leftarrow O_p = (\oplus q$ received A_p
9. $V_p \leftarrow V_p \oplus O_p$ (value is only echoed first time it is seen)
10. (Phase 2)
11. send (r_p, V_p, p) to all
12. wait until (V_p, V_q, q) or $q \in D_p$
13. $V_p \leftarrow V_p \otimes q$ received V_q (computes the "intersection", including V_p
14. (Phase 3)
15. decide on leftmost non-\perp coordinate of V_p

Lemma 2. After Phase 2 is complete, $V_c = V_p$ for each p that completes phase 2

Proof

All processes that completed phase 2 have received V_c. Since V_c is the smallest V vector,
$V_c[i] \neq \perp \Rightarrow V_p[i] \neq \perp \forall p$

By the definition of \otimes
$V_c[i] = \perp \Rightarrow V_p[i] = \perp \forall p$

after phase 2

Lemma 3. $V_c \neq (\perp, \perp, \ldots, \perp)$

Solving consensus

1. $V_p = (\perp, \ldots, \perp, V_p, \ldots, \perp)$ (p's estimate of the proposed values)
2. $V_p = (\perp, \ldots, \perp, V_p, \ldots, \perp)$
3. (Phase 1)
4. for $r_p = 1$ to $n-1$
5. send (r_p, V_p, p) to all
6. wait until (V_p, V_q, q) or $q \in D_p$
7. $O_p = V_p$
8. $V_p \leftarrow V_p \oplus (\oplus q$ received A_q
9. $V_p \leftarrow V_p \otimes O_p$ (value is only echoed first time it is seen)
10. (Phase 2)
11. send (r_p, V_p, p) to all
12. wait until (V_p, V_q, q) or $q \in D_p$
13. $V_p \leftarrow V_p \otimes q$ received V_q (computes the "intersection", including V_p
14. (Phase 3)
15. decide on leftmost non-\perp coordinate of V_p

Theorem. The protocol to the left satisfies Validity, Agreement, and Termination

Proof

Left as an exercise

A lower bound - I

Theorem. Consensus with $\Diamond P$ requires $f < n/2$

Proof

Suppose n is even, and a protocol exists that solves consensus when $f = n/2$
Divide the set of processes in two sets of size $n/2$, P_1 and P_2
Consider three executions:

- All processes in P_1 crash before they can propose.
- Detectors work perfectly.
- $P_1 \leftarrow 0$; $P_2 \leftarrow 0$

- All processes in P_2 crash before they can propose.
- Detectors work perfectly.
- $P_1 \leftarrow 0$; $P_2 \leftarrow 0$

- P_1 decides 0 after t_1

- $P_1 \leftarrow 1$; $P_2 \leftarrow 1$

- All processes in P_2 crash before they can propose.
- Detectors work perfectly.
- $P_1 \leftarrow 0$; $P_2 \leftarrow 0$

- P_1 decides 0 after t_1

- $P_1 \leftarrow 1$; $P_2 \leftarrow 1$

- All processes in P_1 crash before they can propose.
- Detectors work perfectly.
- $P_1 \leftarrow 0$; $P_2 \leftarrow 0$

- P_2 decides 1 after t_2
A lower bound - II

Consider three executions:

1. All processes in P_2 crash before they can propose. Detectors work perfectly.
 - P_1 decides 0 after t_1
 - P_2 decides 1 after t_2

2. No process crashes. All processes in P_1 crash before they can propose. Detectors make mistakes: until $\max(t_1, t_2)$, P_1 believes P_2 crashed, and vice versa.
 - P_1 decides 0
 - P_2 decides 1

3. No process crashes. All processes in P_1 crash before they can propose. Detectors make mistakes: until $\max(t_1, t_2)$, P_1 believes P_2 crashed, and vice versa.
 - P_1 decides 0
 - P_2 decides 1

The case of the Rotating Coordinator

Solving consensus with $\Diamond W$ (actually, $\Diamond S$)

- Asynchronous rounds
- Each round has a coordinator c
- $c_{id} = (r \ mod \ n) + 1$
- Each process p has an opinion $v_p \in \{0, 1\}$ (with a time of adoption t_p)
- Coordinator collects opinions to form a suggestion
- If they believe c to be correct, processes adopt its suggestion and make it their own opinion
- A suggestion adopted by a majority of processes is "locked"

One round, four phases

Phase 1

Each process, including c, sends its opinion timestamped r to c.

...
One round, four phases

Phase 1
Each process, including \(c\), sends its opinion timestamped \(r\) to \(c\).

Phase 2
\(c\) waits for first \([n/2+1]\) opinions with timestamp \(r\).
\(c\) selects \(v\), one of the most recently adopted opinions.
\(v\) becomes \(c\)'s suggestion for round \(r\).
\(c\) sends its suggestion to all.

Phase 3
Each \(p\) waits for a suggestion, or for failure detector to signal \(c\) is faulty.
If \(p\) receives a suggestion, \(p\) adopts it as its new opinion and ACKs to \(c\).
Otherwise, \(p\) NACKs to \(c\).

Phase 4
\(c\) waits for first \([n/2+1]\) responses.
If all ACKs, then \(c\) decides on \(v\) and sends DECIDE to all.
If \(p\) receives DECIDE, then \(p\) decides on \(v\).

Consensus using \(\diamond S\)

\(v_p\) := input bit; \(r_p := 0\); \(t_p := 0\); \(\text{state}_p := \text{undecided}\)
while \(p\) undecided do
\(c := r + 1\)
\(c := (r \mod n + 1)\)
\(p\) sends \((p, r, v_p, t_p)\) to \(c\)
\(c\) waits for first \([n/2+1]\) opinions \((q, r, v_q, t_q)\)
\(c\) selects among them the value \(v_q\) with the largest \(t_q\)
\(c\) sends \((c, r, v_q)\) to all
\(c\) waits for suggestions from the current coordinator\)
\(p\) waits until suggestion \((c, r, v)\) arrives or \(c \in 0.S_p\)
if suggestion is received then \(v_p := v\); \(t_p := t\); \(p\) sends \((r, \text{ACK})\) to \(c\)
else \(p\) sends \((r, \text{NACK})\) to \(c\)
\(c\) waits for first \([n/2+1]\) \((r, \text{ACK})\) or \((r, \text{NACK})\)
if \(c\) receives \([n/2+1]\) \((r, \text{ACK})\) or \((r, \text{NACK})\)
to all
when \(p\) delivers \((r, \text{DECIDE}, v)\) then \(p\) decides \(v\); \(\text{state}_p := \text{decided}\).
\(S \) Consensus as Paxos

- All processes are acceptors
- In round \(r \), node \((r \mod n) + 1\) serves both as a distinguished proposer and as a distinguished learner
- The round structure guarantees a unique proposal number
- The value that a proposer proposes when no value is chosen is not determined