Early Stopping: The Protocol

Let $\text{faulty}(p, k)$ be the set of processes that have failed to send a message to p in any round $1, \ldots, k$.

1. if $p = \text{sender}$ then value := m, else value := ?

Process p in round $k, 1 \leq k \leq f + 1$
2. send value to all
3. if delivered in round $k-1$ then halt
4. receive round k values from all
5. $\text{faulty}(p, k) := \text{faulty}(p, k - 1) \cup \{ q \mid p \text{ received no value from } q \text{ in round } k \}$
6. if received value $v \neq ?$ then
7. $\text{value} := v$
8. deliver value
9. if $p = \text{sender}$ then value := ?
10. else if $k = f + 1$ or $|\text{faulty}(p, k)| < k$ then
11. $\text{value} := \text{SF}$
12. deliver value
13. if $k = f + 1$ then halt

Termination

Let $\text{faulty}(p, k)$ be the set of processes that have failed to send a message to p in any round $1, \ldots, k$.

1. if $p = \text{sender}$ then value := m, else value := ?

Process p in round $k, 1 \leq k \leq f + 1$
2. send value to all
3. if delivered in round $k-1$ then halt
4. receive round k values from all
5. $\text{faulty}(p, k) := \text{faulty}(p, k - 1) \cup \{ q \mid p \text{ received no value from } q \text{ in round } k \}$
6. if received value $v \neq ?$ then
7. $\text{value} := v$
8. deliver value
9. if $p = \text{sender}$ then value := ?
10. else if $k = f + 1$ or $|\text{faulty}(p, k)| < k$ then
11. $\text{value} := \text{SF}$
12. deliver value
13. if $k = f + 1$ then halt

Validity

If in any round a process receives a value, then it delivers the value in that round.

If a process has received only “?” for $f+1$ rounds, then it delivers SF in round $f+1$.

Termination

If in any round a process receives a value, then it delivers the value in that round.

If a process has received only “?” for $f+1$ rounds, then it delivers SF in round $f+1$.
Validity

If the sender is correct then it sends m to all in round 1.

By Validity of the underlying send and receive, every correct process will receive m by the end of round 1.

By the protocol, every correct process will deliver m by the end of round 1.

Agreement - 1

For any \(r \geq 1 \), if a process \(p \) delivers \(m = \text{SF} \) in round \(r \), then there exists a sequence of processes \(p_0, p_1, \ldots, p_r \) such that \(p_0 = \text{sender} \), \(p_r = p \), and in each round \(k, 1 \leq k \leq r \), \(p_{k-1} \) delivers m and \(p_k \) receives it. Furthermore, all processes in the sequence are distinct; unless \(r = 1 \) and \(p_0 = p_1 = \text{sender} \).

Lemma 1:

For any \(r \geq 1 \), if a process \(p \) sets value to SF in round \(r \), then there exist some \(j \leq r \) and a sequence of distinct processes \(q_1, q_2, \ldots, q_j = p \) such that \(q_j \) only receives \(m \) in rounds \(1 \) to \(j \), \(|\text{faulty}(q_j)| < j \), and in each round \(k, j+1 \leq k \leq r \), \(q_{k-1} \) sends SF to \(q_k \) and \(q_k \) receives SF.

Agreement - 2

Let \(\text{faulty}(p, k) \) be the set of processes that have failed to send a message to \(p \) in any round \(1, \ldots, k \).

1. If \(p = \text{sender} \) then value := \(m \) else value := ?

Process \(p \) in round \(k, 1 \leq k \leq f+1 \):

2. send value to all
3. if delivered in round \(k-1 \) then halt
4. receive round \(k \) values from all
5. \(\text{faulty}(p, k) := \text{faulty}(p, k-1) \cup \{q \} \)
 received no value from \(q \) in round \(k \)
6. if received value \(\neq \# \) then
 value := ?
7. value := ?
8. deliver value
9. if \(p = \text{sender} \) then value := ?
10. else if \(k = f+1 \) or \(|\text{faulty}(p, k)| < k \) then
11. value := SF
12. deliver value
13. if \(k = f+1 \) then halt

Lemma 3:

It is impossible for \(p \) and \(q \), not necessarily correct or distinct, to set value in the same round \(r \) to \(m \) and SF, respectively.
Agreement - 3

Let \(\text{faulty}(p, k) \) be the set of processes that have failed to send a message to \(p \) in any round \(1, \ldots, k \).

1: if \(p = \text{sender} \) then value := \(m \) else value := ?

Process \(p \) in round \(k \), \(1 \leq k \leq f+1 \)

2: send value to all
3: if delivered in round \(k-1 \) then halt
4: receive round \(k \) values from all
5: \(\text{faulty}(p, k) = \text{faulty}(p, k-1) \cup \{q\} \) if \(p \) received no value from \(q \) in round \(k \)
6: if received value \(\neq \# \) then
7: value := ?
8: deliver value
9: if \(p = \text{sender} \) then value := ?
10: else if \(k = f + 1 \) or \(|\text{faulty}(p, k)| < k \) then
11: value := SF
12: deliver value
13: if \(k = f + 1 \) then halt

Integrity

Let \(\text{faulty}(p, k) \) be the set of processes that have failed to send a message to \(p \) in any round \(1, \ldots, k \).

1: if \(p = \text{sender} \) then value := \(m \) else value := ?

Process \(p \) in round \(k \), \(1 \leq k \leq f+1 \)

2: send value to all
3: if delivered in round \(k-1 \) then halt
4: receive round \(k \) values from all
5: \(\text{faulty}(p, k) = \text{faulty}(p, k-1) \cup \{q\} \) if \(p \) received no value from \(q \) in round \(k \)
6: if received value \(\neq \# \) then
7: value := ?
8: deliver value
9: if \(p = \text{sender} \) then value := ?
10: else if \(k = f + 1 \) or \(|\text{faulty}(p, k)| < k \) then
11: value := SF
12: deliver value
13: if \(k = f + 1 \) then halt

Proof

If no correct process ever receives \(m \), then every correct process delivers SF in round \(f+1 \).

Agreement - 3

Let \(\text{faulty}(p, k) \) be the set of processes that have failed to send a message to \(p \) in any round \(1, \ldots, k \).

1: if \(p = \text{sender} \) then value := \(m \) else value := ?

Process \(p \) in round \(k \), \(1 \leq k \leq f+1 \)

2: send value to all
3: if delivered in round \(k-1 \) then halt
4: receive round \(k \) values from all
5: \(\text{faulty}(p, k) = \text{faulty}(p, k-1) \cup \{q\} \) if \(p \) received no value from \(q \) in round \(k \)
6: if received value \(\neq \# \) then
7: value := ?
8: deliver value
9: if \(p = \text{sender} \) then value := ?
10: else if \(k = f + 1 \) or \(|\text{faulty}(p, k)| < k \) then
11: value := SF
12: deliver value
13: if \(k = f + 1 \) then halt

Integrity

Let \(\text{faulty}(p, k) \) be the set of processes that have failed to send a message to \(p \) in any round \(1, \ldots, k \).

1: if \(p = \text{sender} \) then value := \(m \) else value := ?

Process \(p \) in round \(k \), \(1 \leq k \leq f+1 \)

2: send value to all
3: if delivered in round \(k-1 \) then halt
4: receive round \(k \) values from all
5: \(\text{faulty}(p, k) = \text{faulty}(p, k-1) \cup \{q\} \) if \(p \) received no value from \(q \) in round \(k \)
6: if received value \(\neq \# \) then
7: value := ?
8: deliver value
9: if \(p = \text{sender} \) then value := ?
10: else if \(k = f + 1 \) or \(|\text{faulty}(p, k)| < k \) then
11: value := SF
12: deliver value
13: if \(k = f + 1 \) then halt

Proof

If no correct process ever receives \(m \), then every correct process delivers SF in round \(f+1 \).

At most one

- Failures are benign, and a process executes at most one deliver event before halting.

If \(m \neq \text{SF} \), **only if** \(m \) was broadcast

- From Lemma 1 in the proof of Agreement
A Lower Bound

Theorem

There is no algorithm that solves the consensus problem in fewer than $f+1$ rounds in the presence of f crash failures, if $n \geq f + 2$

We consider a special case ($f = 1$) to study the proof technique

Views

Let α be an execution. The **view** of process p_i in α, denoted by $\alpha|p_i$, is the subsequence of computation and message receive events that occur in p_i together with the state of p_i in the initial configuration of α

Views

Let α be an execution. The view of process p_i in α, denoted by $\alpha|p_i$, is the subsequence of computation and message receive events that occur in p_i together with the state of p_i in the initial configuration of α

Similarity

Definition Let α_1 and α_2 be two executions of consensus and let p_i be a correct process in both α_1 and α_2.

α_1 is similar to α_2 with respect to p_i, denoted $\alpha_1 \sim_{p_i} \alpha_2$, if $\alpha_1|p_i = \alpha_2|p_i$
Similarity

Definition Let α_1 and α_2 be two executions of consensus and let p_i be a correct process in both α_1 and α_2.

α_1 is similar to α_2 with respect to p_i, denoted $\alpha_1 \sim_p \alpha_2$ if $\alpha_1[p_i] = \alpha_2[p_i]$.

Note: If $\alpha_1 \sim_p \alpha_2$ then p_i decides the same value in both executions.

Lemma: If $\alpha_1 \sim_p \alpha_2$ and p_i is correct, then $\text{dec}(\alpha_1) = \text{dec}(\alpha_2)$.

The transitive closure of $\alpha_1 \sim_p \alpha_2$ is denoted $\alpha_1 \approx \alpha_2$.

We say that $\alpha_1 \approx \alpha_2$ if there exist executions $\beta_1, \beta_2, \ldots, \beta_{k+1}$ such that $\alpha_1 = \beta_1 \sim_{p_i} \beta_2 \sim_{p_i} \ldots \sim_{p_i} \beta_{k+1} = \alpha_2$.

Note: If $\alpha_1 \approx \alpha_2$ then p_i decides the same value in both executions.

Lemma: If $\alpha_1 \approx \alpha_2$ and p_i is correct, then $\text{dec}(\alpha_1) = \text{dec}(\alpha_2)$.
Single-Failure Case

There is no algorithm that solves consensus in fewer than two rounds in the presence of one crash failure, if $n \geq 3$

The Idea

By contradiction

- Consider a one-round execution in which each process proposes 0. What is the decision value?
- Consider another one-round execution in which each process proposes 1. What is the decision value?
- Show that there is a chain of similar executions that relate the two executions.

So what?

Adjacent α^i’s are similar!

Starting from α^i, we build a set of executions α^j where $0 \leq j \leq n-1$ as follows:

α^j is obtained from α^i after removing the messages that p_i sends to the j-th highest numbered processors (excluding itself)
The executions

Indistinguishability

Indistinguishability

Indistinguishability
Indistinguishability
Indistinguishability

\[p_0 \quad 1 \]

\[\cdots \]

\[p_{i-1} \quad 1 \]

\[p_i \quad 0 \]

\[\vdots \]

\[p_{n-1} \quad 0 \]

\[\alpha_i \]

\[\approx \]

\[\beta_0 \]

\[\alpha_{n-1} \]

\[\approx \]

\[\alpha_{i+1} \]