Flat Domains and Recursive Equations in ACL2

by

John Cowles

University of Wyoming
ACL2 is a logic of total functions.

- Some recursive equations have no satisfying ACL2 functions:

 No ACL2 function \(g \) satisfies this recursive equation

 \[
 \text{(equal } (g \ x) \text{)} \\
 \text{(if } (\text{equal } x \ 0) \\
 \text{nil} \\
 \text{(cons nil } (g \ (- \ x \ 1)))\text{)}. \\
 \]

 Theory of flat domains is a rival logic of total functions.

- Every recursive equation has at least one satisfying function.
Flat Domains

From the fix-point theory of program semantics.

A flat domain is a structure

$$< S, \sqsubseteq, \bot >$$

, where

- S is a set,

- $\bot \in S$, and

- \sqsubseteq is the partial order defined by

$$x \sqsubseteq y \iff x = \bot \lor x = y.$$
Graphical representation of a flat domain:

\[S - \{\bot\} \]
\[\bullet \ldots \bullet \bullet \bullet \ldots \bullet \]
\[\bot \]

- Graphical representation of the \(\sqsubseteq \) relation defined by
 \[x \sqsubseteq y \iff x \subseteq y \land x \neq y. \]

- The “flat part” is depicted by the vertices labeled with \(S - \{\bot\} \).
Extend the partial order, \sqsubseteq, \textit{componentwise} to

- tuples from $S \times S \times \cdots \times S$ by

 $< x_1, \ldots, x_n > \sqsubseteq < y_1, \ldots, y_n >$

 $\iff x_1 \sqsubseteq y_1 \land \cdots \land x_n \sqsubseteq y_n$

- functions $f, g : S \times \cdots \times S \to S$ by

 $f \sqsubseteq g \iff (\forall \bar{x} \in S^n)[f(\bar{x}) \sqsubseteq g(\bar{x})]$
Flat Domains

Use total functions to model partial functions.

• Interpret

\[f(\vec{x}) = \bot \]

as meaning

\[f(\vec{x}) \text{ is undefined.} \]

• Interpret, for functions \(f \) and \(g \),

\[f \sqsubseteq g \]

as meaning

whenever \(f(\vec{x}) \) is defined,

\(\circ \) \(g(\vec{x}) \) is also defined, and

\(\circ \) \(f(\vec{x}) = g(\vec{x}). \)
Least Upper Bounds of Chains

Every chain of functions on S,

$$f_0 \subseteq f_1 \subseteq \cdots \subseteq f_i \subseteq \cdots,$$

has an unique least upper bound, $\sqcup f_i$.

- $\sqcup f_i$ is a function on S,

- for all j, $f_j \subseteq \sqcup f_i$ and

- if f is any function such that for all i, $f_i \subseteq f$, then $\sqcup f_i \subseteq f$,

- define $\sqcup f_i(\vec{x})$ by cases:

 Case 1. $\forall i (f_i(\vec{x}) = \perp)$.
 Let $\sqcup f_i(\vec{x}) = \perp$.

 Case 2. $\exists j (f_j(\vec{x}) \neq \perp)$.
 Let $\sqcup f_i(\vec{x}) = f_j(\vec{x})$.
Flat Domains
Recursive Equations

Let F be a function variable and let $\tau[F]$ be a term built by compositions involving F and other functions.

A recursive equation is of the form

$$ F(\vec{x}) = \tau[F](\vec{x}). $$

A solution for such an equation is a function f such that for all \vec{x},

$$ f(\vec{x}) = \tau[f](\vec{x}). $$

Such a solution f is called a fixed point of the term $\tau[F](\vec{x})$.
Flat Domains

The Kleene Construction

A term $\tau[F]$ is monotonic:

- Whenever f and g are functions such that $f \subseteq g$, then $\tau[f] \subseteq \tau[g]$.

Kleene’s construction:

- When $\tau[F]$ is monotonic,

\[
F(\overrightarrow{x}) = \tau[F](\overrightarrow{x})
\]

always has a solution.
Flat Domains

The Kleene Construction

Kleene’s construction:

• Use the term $\tau[F]$ to recursively define a chain of functions,

\[
\begin{align*}
 f_0(\vec{x}) &= \bot \\
 f_{i+1}(\vec{x}) &= \tau[f_i](\vec{x}).
\end{align*}
\]

• Since $\tau[F]$ is monotonic,

\[
f_0 \sqsubseteq f_1 \sqsubseteq \cdots \sqsubseteq f_i \sqsubseteq \cdots
\]

• Then,

\[
\sqcup f_i = \tau[\sqcup f_i].
\]

That is, $\sqcup f_i$ is a solution for the recursive equation $F(\vec{x}) = \tau[F](\vec{x})$.

9-a
Turn ACL2 data into a flat domain

Impose a partial order, \leq, on ACL2 data:

- specify a “least element”, (\texttt{bottom}), strictly less than any other ACL2 datum

 \[
 \text{(defstub)} \quad \texttt{bottom} () \Rightarrow * \]

- no other distinct data items are related:

 \[
 \text{(defun)} \quad \texttt{<=} (x y) \\
 \quad (\text{or} \ (\text{equal} \ x \ (\texttt{bottom})) \\
 \quad \quad \ (\text{equal} \ x \ y))
 \]

- (\texttt{bottom}) plays the part of \bot and \leq plays the part of \sqsubseteq.
Chains of functions in ACL2

Formalize a chain of functions

\[f_0 \sqsubseteq f_1 \sqsubseteq \cdots \sqsubseteq f_i \sqsubseteq \cdots. \]

- Treat the index as an additional argument to the function, so \(f_i(x) \) becomes \((f \ i \ x) \) in ACL2.

- The \(\leq \)-chain of functions is consistently axiomatized by

\[
(\text{implies} \ (\text{and} \ (\text{integerp} \ i) \\
\quad (\geq \ i \ 0)) \\
\quad (\leq \ (f \ i \ x) \\
\quad \quad (f \ (+ \ 1 \ i) \ x))).
\]
Chains of functions in ACL2

Formalize the least upper bound, $\sqcup f_i$, of

$$f_0 \sqsubseteq f_1 \sqsubseteq \cdots \sqsubseteq f_i \sqsubseteq \cdots.$$

- Use `defchoose` to pick the appropriate “index” required in the definition of the least upper bound.

- ACL2 verifies this formal least upper bound is, in fact, the least upper bound of the chain.
Which ACL2 terms are monotonic?

Recall:

To ensure that Kleene’s construction always produces

- a solution for the recursive equation
 \[F(\vec{x}) = \tau[F](\vec{x}), \]

- the term \(\tau[F] \) must be monotonic:
 \[f \sqsubseteq g \Rightarrow \tau[f] \sqsubseteq \tau[g]. \]
Which ACL2 terms are monotonic?

Tail Recursion. Let \(\text{test} \), \(\text{base} \), and \(\text{st} \) be arbitrary unary functions.

Consider a term \(\tau[F] \) of the form

\[
(\text{if} (\text{test} \ x)
 (\text{base} \ x)
 (F (\text{st} \ x)))).
\]

Such *tail recursive terms are always monotonic.*

- This means that tail recursive equations always have solutions.

- Another explanation for Pete & J’s result that any tail recursive equation is satisfiable by some ACL2 function.
Such *tail recursive terms are always monotonic*:

Let f and g be functions such that
(\leq (f x)(g x)), [i.e., $f \sqsubseteq g$].

Case 1. (test x) is **not** NIL.

$\tau[f](x) = (\text{base } x) = \tau[g](x)$.

So $\tau[f] \sqsubseteq \tau[g]$.

Case 2. (test x) is NIL

Since $\forall y[(f y) \sqsubseteq (g y)]$,

$\tau[f](x) = (f (\text{st } x))$

$\sqsubseteq (g (\text{st } x))$

$= \tau[g](x)$.

Thus $\tau[f] \sqsubseteq \tau[g]$.

14-a
Which ACL2 terms are monotonic?

Primitive Recursion. Let test, base, and st be arbitrary unary functions.

Let \(h \) be a binary function.

Consider a term \(\tau[F] \) of the form

\[
(if \ (test \ x) \\
(base \ x) \\
(h \ x \ (F \ (st \ x))))
\]

Often such terms are **not** monotonic.

Such terms are **are** monotonic

if \(h \) *always preserves* \(\sqsubseteq \) in its second input:

\[
y_1 \sqsubseteq y_2 \Rightarrow (h \ x \ y_1) \sqsubseteq (h \ x \ y_2)
\]
Such primitive recursive terms are monotonic if h always preserves \sqsubseteq in its second input:

Let f and g be functions such that $(\leq (f\ x)\ (g\ x))$, [i.e., $f \sqsubseteq g$].

Case 1. (test x) is not NIL.
$\tau[f](x) = (\text{base } x) = \tau[g](x)$.
So $\tau[f] \sqsubseteq \tau[g]$.

Case 2. (test x) is NIL
Since $\forall y[(f\ y) \sqsubseteq (g\ y)]$,
$(f\ (\text{st } x)) \sqsubseteq (g\ (\text{st } x))$.
Since h always preserves \sqsubseteq in its second input,
$\tau[f](x) = (h\ x\ (f\ (\text{st } x)))$
$\sqsubseteq (h\ x\ (g\ (\text{st } x)))$
$= \tau[g](x)$.
Thus $\tau[f] \sqsubseteq \tau[g]$.

15-a
Such primitive recursive terms are monotonic if \(h \) always preserves \(\sqsubseteq \) in its second input:

\[
y_1 \sqsubseteq y_2 \Rightarrow (h \times y_1) \sqsubseteq (h \times y_2)
\]

From *Consistently Adding Primitive Recursive Definitions in ACL2*,

\[
\text{(equal } (F \times x) \\
\quad \text{(if } (\text{test } x) \\
\quad \quad \text{(base } x) \\
\quad \quad \quad (h \times (F \times (\text{st } x))))).)
\]

A sufficient (but not necessary) condition on \(h \) for the existence of \(F \) is that \(h \) have a right fixed point.

That is, there is some \(c \) such that

\[(h \times c) = c.\]

Restate in the terminology of flat domains:

A sufficient (but not necessary) condition on \(h \) for a primitive recursive term, \(\tau[F] \), to be monotonic is that \(h \) have a right fixed point.
Use: Such primitive recursive terms are monotonic

 if \(h \) always preserves \(\sqsubseteq \) in its second input:

\[
y_1 \sqsubseteq y_2 \Rightarrow (h \times y_1) \sqsubseteq (h \times y_2)
\]

To Prove: A sufficient (but not necessary) condition on \(h \) for a primitive recursive term, \(\tau[F] \), to be monotonic is that \(h \) have a right fixed point, \(c \).

Proof. Use the right fixed point \(c \) to build a flat domain:

- Use \(c \) for \(\bot \) and

- \(\sqsubseteq_c \) for \(\sqsubseteq \) where

\[
x \sqsubseteq_c y \iff x = c \lor x = y.\]

- Then

\[
y_1 \sqsubseteq_c y_2 \Rightarrow (h \times y_1) \sqsubseteq_c (h \times y_2)
\]
Which ACL2 terms are monotonic?

Nested Recursion. Let `test`, `base`, and `st` be arbitrary unary functions.

Consider a term \(\tau[F] \) of the form

\[
\text{(if (test x) } \\
\text{ (base x) } \\
\text{ (F (F (st x)))})
\]

Often such terms are not monotonic.

Such terms are monotonic if \(F \) always preserves \(\sqsubseteq \):

\[
y_1 \sqsubseteq y_2 \Rightarrow (F y_1) \sqsubseteq (F y_2)
\]

That is, restrict the variable \(F \) to range only over functions that always preserve \(\sqsubseteq \).
Nested Recursion and Kleene’s Construction

Recall Kleene’s construction:

- Use the term $\tau[F]$ to recursively define a chain of functions,
 $$
 f_0(x) = \bot \\
 f_{i+1}(x) = \tau[f_i](x).
 $$

- Since $\tau[F]$ is monotonic,
 $$
 f_0 \sqsubseteq f_1 \sqsubseteq \cdots \sqsubseteq f_i \sqsubseteq \cdots
 $$

- To ensure $\tau[F]$ is monotonic, the function variable F should range only over functions that always preserve \sqsubseteq.

- That is, each f_i should always preserve \sqsubseteq.
Nested Recursion and Kleene’s Construction

To ensure that each f_i always preserves \sqsubseteq:

- Clearly, f_0, defined by $f_0(x) = \bot$, always preserves \sqsubseteq.

- **Require**: Whenever f always preserves \sqsubseteq, then $\tau[f]$ is also a function that always preserves \sqsubseteq.
Nested Recursion and Kleene’s Construction

Requirement. Whenever f always preserves \sqsubseteq, then $\tau[f]$ is also a function that always preserves \sqsubseteq.

Orthodox Solution. Functions, that always preserve \sqsubseteq, are closed under composition.

- **Restrict** $\tau[F]$ to compositions involving F and functions that always preserve \sqsubseteq.

- So test, base, st, and if should all be functions that always preserve \sqsubseteq

\[
(\text{if} \ (\text{test} \ x) \\
\ (\text{base} \ x) \\
\ (F \ (F \ (\text{st} \ x))))
\]

- **Problem.** ACL2’s if does not preserve \sqsubseteq.

16-c
Nested Recursion and Kleene’s Construction

Problem. ACL2’s if does not preserve \(\sqsubseteq\).

- Assume \(\bot \neq \text{NIL}\).
- Then \(\bot \sqsubseteq \text{NIL}\), but

\[(\text{if } \bot 0 1) = 0 \not\sqsubseteq 1 = (\text{if } \text{NIL} 0 1) \]

Solution. Replace ACL2’s if with a *sequential* version, sq-if, that always preserves \(\sqsubseteq\).

\[
\begin{align*}
\text{(sq-if } \bot \text{ b c)} &= \bot \\
\text{(sq-if } \text{NIL b c)} &= c \\
\text{(sq-if } a \text{ b c)} &= b \text{ if } a \neq \bot \land a \neq \text{NIL}
\end{align*}
\]
Nested Recursion and Kleene’s Construction

Requirement. Whenever f always preserves \sqsubseteq, then $\tau[f]$ is also a function that always preserves \sqsubseteq.

Non-Orthodox Solution. Replace ACL2’s `if` with the sequential version, `sq-if`, and make sure `test` is **strict**.

- A function is *strict* iff the function returns \bot whenever any of its inputs is \bot.
- Every strict function always preserves \sqsubseteq.
- The function `sq-if` is **not** strict.
Nested Recursion and Kleene’s Construction

Non-Orthodox Solution. When test is strict, the term

\[
(sq-if \ (test \ x) \\
(\text{base} \ x) \\
(F \ (F \ (st \ x))))
\]

always produces a strict function, whenever F is replaced by any unary function f.

Every strict function always preserves \(\sqsubseteq \).
Primitive heuristics for ensuring terms are monotonic

For subterms, \(\tau[F] \), of the form

\[
\text{(if (test } x \text{) (then } x \text{) (else } x))
\]

- If \(F \) appears in \(\text{(test } x \text{)} \), then replace \text{if} by \text{sq-if}.

- If \(F \) is nested more than one deep in any of \(\text{(test } x \text{)} \), \(\text{(then } x \text{)} \), or \(\text{(else } x \text{)} \), then replace \text{if} by \text{sq-if} and ensure that \(\text{(test } x \text{)} \) is strict.
Primitive heuristics for ensuring terms are monotonic

- If \(F \) appears in (then \(x \)) or (else \(x \)) then, other function applications appearing in (then \(x \)) or (else \(x \)),

1. need not be applications of functions that always preserve \(\sqsubseteq \), if they contain no applications of \(F \);

2. should be applications of functions that always preserve \(\sqsubseteq \), if they contain any application of \(F \).

Example. \((h \ (F \ (st \ x))) \)
- \(st \) need not preserve \(\sqsubseteq \)
- \(h \) should preserve \(\sqsubseteq \)
Zero Function. Construct an ACL2 function Z satisfying the equation

\[
\text{(equal (Z x)} \\
\text{(if (equal x 0)} \\
\text{ 0} \\
\text{(* (Z (- x 1))(Z (+ x 1)))).)}
\]

- The two recursive calls of Z are contained inside the call to \ast.

- The heuristics suggest that \ast is the only function required to preserve \sqsubseteq.

- Unfortunately, \ast does not preserve \sqsubseteq with respect to the usual ACL2 version of \bot, (bottom).
A strict version of * would require

\[(\text{equal } (* (\$bottom\$) x) (\$bottom\$))\]
\[(\text{equal } (* x (\$bottom\$)) (\$bottom\$)).\]

Fortunately, the above two equations do hold if \(\$bottom\$) is replaced by 0,

\[(\text{equal } (* 0 x) 0)\]
\[(\text{equal } (* x 0) 0).\]

Therefore, the entire construction can be carried out using 0 in place of \(\$bottom\$).

This example illustrates that any convenient ACL2 object can be used to play the role of \(\$bottom\$).
Ackermann’s Function. Construct an ACL2 function \(f \) satisfying

\[
\text{(equal (f x1 x2))} = \begin{cases}
\text{(+ x2 1)} & \text{if (equal x1 0)} \\
\text{(f (- x1 1) 1) } & \text{if (equal x2 0)} \\
\text{(f (- x1 1) (f x1 (f (- x2 1))))) } & \text{otherwise}
\end{cases}
\]

The heuristics suggest it should be possible to find \(f \) that satisfies:
\[
\text{(equal (f x1 x2))}
\]
\[
\quad \text{(if (equal x1 0)}
\]
\[
\quad \quad (+ x2 1)
\]
\[
\quad \quad \text{(SQ-IF (LT-ST-EQUAL x2 0)}
\]
\[
\quad \quad \quad \text{(f (- x1 1) 1)}
\]
\[
\quad \quad \quad \text{(f (- x1 1)
\]
\[
\quad \quad \quad \quad \text{(f x1
\]
\[
\quad \quad \quad \quad \quad (- x2 1))))))).
\]

- Here SQ-IF is the monotonic sequential version of if,

- LT-ST-EQUAL is a left-strict version of equal satisfying

\[
\text{(equal (LT-ST-EQUAL 'undef$ y) 'undef$).}
\]

- Here 'undef$ is used in place of ($bottom$).
The heuristics are too primitive. No such ACL2 function was proved to exist. But, experimentation shows it is possible to define an ACL2 function f satisfying

$$(\text{equal } (f \ x1 \ x2))$$

$$(\text{if } (\text{equal } x1 \ 0))$$

$$(\text{LT-ST}++ \ x2 \ 1)$$

$$(\text{sq-if } (\text{lt-st-equal } x2 \ 0))$$

$$((f \ (- \ x1 \ 1) \ 1)$$

$$((f \ (- \ x1 \ 1)$$

$$((f \ x1$$

$$((- \ x2 \ 1))))))$).

- Here LT-ST++ is a left-strict version of (binary) $+$ satisfying

$$(\text{equal } (\text{LT-ST}++ \ '\text{undef}$ y) '\text{undef$)}).$$
Of course any function f satisfying this last equation may not satisfy the original equation. However, ACL2 can verify the following, showing that any such f can fail to satisfy the original equation only when the second input is `undef$:

\[
(\text{implies} \ (\not \ (\text{equal} \ x2 \ \text{'undef$})) \ \\
(\text{equal} \ (f \ x1 \ x2) \ \\
(\text{if} \ (\text{equal} \ x1 \ 0) \ \\
\quad (+ \ x2 \ 1) \ \\
\quad (\text{if} \ (\text{equal} \ x2 \ 0) \ \\
\quad \quad (f \ (- \ x1 \ 1) \ 1) \ \\
\quad \quad (f \ (- \ x1 \ 1) \ \\
\quad \quad \quad (f \ x1 \ \\
\quad \quad \quad \quad (- \ x2 \ 1))))) \).
\]