On the Verification of Synthesized Kalman Filters

Ruben Gamboa, John Cowles, Jeff Van Baalen
University of Wyoming
ACL2 Workshop 2003
Supported by NASA grant NAG 2-1570
The General Challenge

- Consider the automatic generation of software
 - customized for a particular use
 - optimized, taking advantage of domain knowledge
 - based on theorem proving technology

- How can we verify the resulting software is correct?
Verifying the Process

- certify the software generator

★ . . . may much more complex than the software it generates

- problems: customizations, optimizations, complexity of the generator, etc. make this a daunting challenge

- the same problem applies to theorem provers
Verifying the Product

- certify the software that is generated, regardless of the generation process

- problems: software may be hard to read or understand

- solution: annotate generated software with a correctness argument

- software can be inspected manually (or mechanically)
The Specific Challenge

- Verify the correctness of automatically generated Kalman Filters
- Use “hints” in the generated code to guide the proof
- Process should be 100% automatic
Our Approach

- Separate the correctness of the program
 - correctness of Kalman Filters
 - correctness of the implementation
- Use as much manual intervention as necessary in the first part
- The second part must be automatic
The Kalman Filter

The roots of the Kalman Filter are in estimation theory. How can we predict the next value of the time-series x_1, x_2, \ldots, x_n? This is especially important when the x_i can not be measured directly.
The Kalman Filter Conditions

\[z_k = H_k x_k + v_k \]
The Kalman Filter Conditions

\[z_k = H_k x_k + v_k \]
\[x_{k+1} = \Phi_k x_k + w_k \]
The Kalman Filter Conditions

\[z_k = H_k x_k + v_k \]
\[x_{k+1} = \Phi_k x_k + w_k \]
\[E[v_k] = 0 \quad E[w_k] = 0 \]
\[E[v_k v_i^T] = \delta_{k-i} R_k \quad E[w_k w_i^T] = \delta_{k-i} Q_k \]
The Kalman Filter Conditions

\[z_k = H_k x_k + v_k \]
\[x_{k+1} = \Phi_k x_k + w_k \]
\[E[v_k] = 0 \quad E[w_k] = 0 \]
\[E[v_k v_i^T] = \delta_{k-i} R_k \quad E[w_k w_i^T] = \delta_{k-i} Q_k \]
\[E[v_k w_i^T] = 0 \]
The Kalman Filter Conditions

\[z_k = H_k x_k + v_k \]
\[x_{k+1} = \Phi_k x_k + w_k \]
\[E[v_k] = 0 \]
\[E[w_k] = 0 \]
\[E[v_k v_i^T] = \delta_{k-i} R_k \]
\[E[w_k w_i^T] = \delta_{k-i} Q_k \]
\[E[v_k w_i^T] = 0 \]
\[E[x_0 v_k^T] = 0 \]
\[E[x_0 w_k^T] = 0 \]
The Kalman Filter

The estimate \hat{x}_k that minimizes $E[(\hat{x}_k - x_k)(\hat{x}_k - x_k)^T]$ is

$$\hat{x}_k = \bar{x}_k + K_k(z_k - H_k\bar{x}_k)$$

$$\bar{x}_k = \Phi_{k-1}\hat{x}_{k-1}$$
The Kalman Filter

The estimate \hat{x}_k that minimizes $E[(\hat{x}_k - x_k)(\hat{x}_k - x_k)^T]$ is

$$
\hat{x}_k = \bar{x}_k + K_k(z_k - H_k \bar{x}_k)
$$

$$
\bar{x}_k = \Phi_{k-1} \hat{x}_{k-1}
$$

$$
K_k = P_k H_k^T (H_k P_k H_k^T + R_k)^{-1}
$$
The Kalman Filter

The estimate \hat{x}_k that minimizes $E[(\hat{x}_k - x_k)(\hat{x}_k - x_k)^T]$ is

\[
\hat{x}_k = \overline{x}_k + K_k(z_k - H_k\overline{x}_k)
\]

\[
\overline{x}_k = \Phi_{k-1}\hat{x}_{k-1}
\]

\[
K_k = \overline{P}_kH_k^T(H_k\overline{P}_kH_k^T + R_k)^{-1}
\]

\[
\overline{P}_k = \Phi_{k-1}P_{k-1}\Phi_{k-1}^T + Q_{k-1}
\]
The estimate \hat{x}_k that minimizes $E[(\hat{x}_k - x_k)(\hat{x}_k - x_k)^T]$ is

\[\hat{x}_k = \bar{x}_k + K_k(z_k - H_k \bar{x}_k) \]
\[\bar{x}_k = \Phi_{k-1} \hat{x}_{k-1} \]
\[K_k = \bar{P}_k H_k^T (H_k \bar{P}_k H_k^T + R_k)^{-1} \]
\[\bar{P}_k = \Phi_{k-1} P_{k-1} \Phi_{k-1}^T + Q_{k-1} \]
\[P_k = (I - K_k H_k) \bar{P}_k \]
The Proof Outline

- Assumptions
 - initial estimates of \overline{x}_0 and its error covariance \overline{P}_0 are known
 - best estimate is a linear combination of the best prior estimate and the measurement error
The Proof Outline

• Claims

★ \(P_k = E[(x_k - \hat{x}_k)(x_k - \hat{x}_k)^T] \)
★ \(\overline{P}_k = E[(x_k - \overline{x}_k)(x_k - \overline{x}_k)^T] \)
★ \(\hat{x}_k \) is the best possible (linear) estimate of \(x_k \)
Comments on the Proof

- Mathematics involves linear algebra, matrix calculus, and multivariate probability theory
- Only linear algebra portion is formalized in ACL2
- Assuming some key facts from the other branches of mathematics, the proof becomes an algebraic reduction
Taming Induction

- All functions we use are mutually recursive
- The proofs involve complex induction

Our approach
- Avoid mutually recursive definitions
- Break complex (mutual) inductions into simpler inductions by (temporarily) assuming the needed instances of the mutual induction hypothesis
Matrix Inverses

- Matrix inverses appear in the computation of K_k

- How do we know these inverses exist?
 - Currently, we are simply assuming they do
 - In reality, they really do (matrices are pos. def.)

- In practice, if the algorithm fails to find an inverse, it can report the failure and reinitialize the filter — how can we capture this idea in ACL2?
Optimality Criterion

- Requires using matrix derivatives
- Currently, we are assuming the facts we need
- In principle, this could be formalized in ACL2(r)
Random Variables

- Proof uses several facts from multivariate probability
- Some of these are hard to formalize in ACL2
- In principle, we can formalize probability theory in ACL2(r)
Verifying Generated Software

- Annotate software with mapping from software entities to mathematical entities
- We verified a sample file — verification was fully automatic
- Open question: will it be as easy to verify other generated Kalman filters?