A Tool for Simplifying Files of ACL2 Definitions

July 13, 2003

Matt Kaufmann

(Advanced Micro Devices, Inc.)
\[\textbf{Introduction} \]

\textbf{GOALS:}

- To simplify files of function definitions
- To transfer proofs of lemmas from the original to the simplified functions

This talk describes a tool that accomplishes these goals.

- \textbf{Tool input:} File of “raw” (un simplified) definitions with optional files of lemmas about them.

- \textbf{Tool output:} File of simplified definitions with (optional) files of lemmas about them.

- Bells and whistles are ignored in this talk.

A secondary goal is to say enough about the tool to help users to customize it for their purposes.
[A Trivial Example]

Original definitions:

(defun a (n)
 0)
(defun %b (n)
 (if (equal (a n) 1) 1 (input1 n)))

Simplified definition of %b:

(defun b (n)
 (input1 n))

The new definition saves the rewriter some effort.

Analogy: program optimization at compile-time to save run-time computation.
[Outline of the rest of this talk]

This talk will focus on small examples.

Details are in the paper and in the supporting materials.
[Files for first small example]

Input files:

inputs.lisp ; basic definitions
defs-in.lisp ; definitions to simplify
lemmas-in.lisp ; lemmas to transfer

Output files:

defs-out.lisp ; simplified defuns
defs-eq.lisp ; proof of equivalence
lemmas-out.lisp ; transferred lemmas
(include-book "defs-in")
(include-book ".../simplify-defuns")
(transform-defuns
 "defs-in.lisp"
 :out-defs "defs-out.lisp"
 :equalities "defs-eq.lisp"
 :thm-file-pairs
 '(("lemmas-in.lisp" "lemmas-out.lisp"
 ; Initial events for lemmas-out.lisp:
 (include-book "defs-out")
 (local (include-book "lemmas-in"))
 (local (include-book "defs-eq"))
 (local
 (in-theory
 (theory '%-removal-theory))))))
[A bit of small example #1, p. 1]

From inputs.lisp (from portcullis of book defs-in):

(defun f1 (x)
 (+ x x))

From defs-in.lisp:

(defun %g1 (x y)
 (cond
 ((zp x) x)
 ((< 0 (f1 x)) y)
 (t 23)))

...

(in-theory (disable %g1 %g2 ...))

From defs-out.lisp:

(DEFUND G1 (X Y) (IF (ZP X) X Y))
A bit of small example #1, p. 2

Strategy for model-eq: control the proof!

(LOCAL (DEFTHEORY THEORY-0
 (THEORY 'MINIMAL-THEORY)))

(LOCAL
 (DEFTHM G1-BODY-IS-%G1-BODY_S
 (EQUAL (IF (ZP X) X Y)
 (COND ((ZP X) X)
 ((< 0 (F1 X)) Y)
 (T 23))
 :HINTS ("Goal" :DO-NOT '(PREPROCESS))
 :RULE-CLASSES NIL))

(DEFTHM G1-IS-%G1
 (EQUAL (G1 X Y) (%G1 X Y))
 :HINTS
 ("Goal" :EXPAND
 ((:FREE (X Y) (%G1 X Y))
 (:FREE (X Y) (G1 X Y)))
 :IN-THEORY (THEORY 'THEORY-0)
 :DO-NOT '(PREPROCESS)
 :USE G1-BODY-IS-%G1-BODY_S)))
Next consider recursion.
From `defs-in.lisp`:

```lisp
(defun %g2 (x y)
  (if (atom x)
      (%g1 x y)
      (%g2 (cdr x) y)))
```

From `defs-out.lisp`:

```lisp
(DEFUND G2 (X Y)
  (IF (CONSP X)
      (G2 (CDR X) Y)
      (G1 X Y)))
```
A bit of small example #1, p. 4

Let’s look at how model-eq.lisp proves equality of %g2 and g2. First set up the appropriate small theory:

(Local (defttheory theory-1
 (union-theories
 '(g1-is-%g1)
 (theory 'theory-0)))))

Next define a recursive function, %%G2, whose body is derived from the simplified body by using the % functions, except that calls of %G2 have been replaced by %%G2.

(Local (defun %%g2 (x y)
 (if (consp x)
 (%%g2 (cdr x) y)
 (%g1 x y))))
A bit of small example #1, p. 5

This leads to a lemma whose proof is trivial for ACL2.

(LOCAL
 (DEFTHM %G2-IS-G2
 (EQUAL (%G2 X Y) (G2 X Y))
 :HINTS
 (("Goal" :IN-THEORY
 (UNION-THEORIES
 '(((:INDUCTION %G2))
 (THEORY 'THEORY-1))
 :DO-NOT '(PREPROCESS)
 :EXPAND ((%G2 X Y) (G2 X Y))
 :INDUCT T)))))
A bit of small example #1, p. 6

ACL2 now proves the following, provided it can prove the goal shown below it.

(DEFTHM G2-IS-%G2
 (EQUAL (G2 X Y) (%G2 X Y))
 :HINTS
 ('"Goal" :BY
 (:FUNCTIONAL-INSTANCE
 %%G2-IS-G2
 (%G2 %G2))
 :DO-NOT '(PREPROCESS)
 :EXPAND ((%G2 X Y))))

The aforementioned goal is as follows, and is proved by rewriting, just as in the non-recursive case, when (%G2 X Y) is expanded.

(EQUAL (%G2 X Y)
 (IF (CONSP X)
 (%G2 (CDR X) Y)
 (G1 X Y)))
[A bit of small example #1, p. 7]

The paper gives more detail, including an example that illustrates how the tool handles mutual recursion. Here is an example of how lemmas are translated.

Original lemma from lemmas-in.lisp:

(deftm %lemma-1
 (implies (true-listp x)
 (equal (%g2 x y) nil))
 :hints ("Goal"
 :in-theory
 (enable %g1 %g2)))

Here is the corresponding generated lemma, from lemmas-out.lisp. The proof takes advantage of the rewrite rule G2-IS-%G2.

(defun lemma-1
 (implies (true-listp x)
 (equal (g2 x y) nil))
 :hints ("Goal" :use %lemma-1))
[Rtl example (intro)]

The tool can be used to support verification of hardware descriptions expressed in register-transfer logic (rtl). Several changes were made in the tool in support of that goal, notably the use of packages.

The following slides show a couple of examples. See the paper and supporting materials for details.
[Rtl example #1]

rtl:

 case (sel[1:0])
 2’b00: out1 = in0;
 2’b01: out1 = in1;
 2’b10: out1 = in2;
 2’b11: out1 = in3;
 endcase

original definition:

FOO$RAW::
(defun out1$ (n $path)
 (declare ...)
 (bind case-select
 (bits (sel n) 1 0)
 (if1 (log= (n! 0 2) case-select)
 (bitn (in0 n) 0)
 (if1 (log= (n! 1 2) case-select)
 (bitn (in1 n) 0)
 ...
)))
)
simplified definition:

(defun out1$ (n $path)
 (declare ...)
 (cond ((equal 0 (sel n)) (in0 n))
 ((equal 1 (sel n)) (in1 n))
 ((equal 2 (sel n)) (in2 n))
 ((equal 3 (sel n)) (in3 n))
 (t 0)))
[Rtl example #2]

rtl:

out2[3:0] <=
 {1'b0, ww[2:0]} + 4'b0001;

original definition:

FOO$RAW::
(defun out2$ (n $path)
 (declare ...)
 (if (zp n)
 (reset 'ACL2::OUT2 4)
 (mod+ (cat (n! 0 1) 1
 (bits (ww (1- n)) 2 0) 3)
 (n! 1 4)
 4)))
simplified definition:

(defun out2$ (n $path)
 (declare ...)
 (if (zp n)
 (reset ’out2 4)
 (bits (+ 1 (ww (+ -1 n))) 3 0))))