Certifying Compositional Model Checking Algorithms in ACL2

Sandip Ray
John Matthews
Mark Tuttle

ACL2 Workshop Presentation
July 14, 2003

Outline

• Motivation and Goals
• Technical Background
• Comments on Our Work
• Issues and Proposals

Model Checking

• A procedure for automatically deducing temporal properties of reactive computer systems.
 – The temporal properties are specified in some temporal logic (CTL, LTL etc.)
 – A computer system is specified as a Kripke Structure.
 – The properties are verified by intelligent and systematic graph search algorithms.

Model Checking: Good, Bad, & Ugly

• Good:
 – If it works, model checking (unlike theorem proving) is a push-button tool.
• Bad:
 – If the system is too large, model checking cannot be applied because of state explosion.
• Ugly
 – The system (and/or property) then needs to be suitably “abstracted” in order to use model checking.
Compositional Model Checking
• Replace the original verification problems by one or more “simpler” problems.
 – Exploit characteristics of the system like symmetry, cone of influence etc.
• Solve each simpler problem using model checking.

 Can be used to verify considerably larger systems.

Verifying Compositional Algorithms
• Implementations of compositional algorithms are often complicated.
 – How do we insure that the algorithms themselves are sound?
• A plausible solution:
 – Use theorem proving to verify the algorithms.
• End Result:
 – A verified tool that can be effectively used to model check temporal properties of large systems.

Our Work
• A feasibility test for verifying compositional algorithms in ACL2.
• Goals:
 – Implement and verify a simple compositional algorithm based on two simple reductions.
 – Integrate the compositional algorithm with a state-of-the-art model checker (Cadence SMV) for efficiently solving the reduced problems.

Outline
• Motivation and Goals
• Technical Background
• Comments on Our Work
• Issues and Proposals
How Do we Verify Compositional Algorithms?

• Specify what it means to verify a temporal property of a system model.
 – Implement the semantics of model checking.
• Implement the compositional algorithms.
 – Recall that a compositional algorithm decomposes a verification problem into a number of “simpler” problems.
• Use theorem proving to show that solving the original problem is equivalent to solving all of the simpler problems (with respect to the semantics of model checking).

System Models

• A System is modeled by:
 – A collection of state variables. The states of the system are defined as the set of all possible assignments to these variables.
 – A description of how the variables are updated in the next state.
 – A set of initial states corresponding to the collection of possible evaluations at reset.

System Model Example

A very simple system:

\[\text{boolean } v_1, v_2, v_3; \]
\[\text{Repeat forever in parallel} \]
\[v_1 = v_2 \land v_3 \]
\[v_2 = v_1 \land v_3; \]
\[\text{end.} \]
\[\text{Initial states: } <000, 111> \]

Corresponding state representation.

Modeling Temporal Properties

• We use LTL formulas to model properties.
• An LTL formula is either:
 – Some state variable or the constants True, False.
 – A Boolean combination of LTL formulas.
 – The application of a temporal operator G, F, X, U, or W to an LTL formula.
• Example property for the simple system:
 \[F (\neg v_1) \]
Semantics of LTL

- The semantics of LTL is specified with respect to (infinite) paths through the system model.
 - \(v \) is true of some path if \(v \) is assigned to true in the first state of the path. (True is true of every path.)
 - \(F \) stands for eventually:
 - \((F p) \) is true of some path iff \(p \) is true of some suffix of the path.
 - \(G \) stands for globally:
 - \((G p) \) is true of some path if \(p \) is true of every suffix of the path.
- A formula is true of a model iff it is true of every path through the model.
- We will call the pair \(<f, M> \) as a verification problem, if \(f \) is an LTL formula and \(M \) is a system model, and the verification problem is satisfied if \(f \) is true of \(M \).

LTL Model Checking Example

- An Example Property:
 - Eventually \(v1 \) becomes false.
- Counterexample!!!
 - Path through \(<111>\)

Our Simple Model

Compositional Algorithm

- Based on two simple reduction:
 - Conjunctive reduction
 - Cone of Influence Reduction

Conjunctive Reduction

- Replace the verification problem
 - \((f1 \land f2) \) is true of \(M \).
- With the two problems:
 - \(f1 \) is true of \(M \).
 - \(f2 \) is true of \(M \).
Cone of Influence Reduction

A Simple System Model

Boolean v1, v2, v3, v4, v5, v6;
Repeat forever in parallel:
 v1 = v2;
 v2 = v1 & v3;
 v3 = v1 & v2;
 v4 = v5 & v3;
 v5 = v4 & v6;
End.

A Simple LTL property

Cone of Influence Reduction

Soundness of Reductions

- Conjunctive Reduction
 - The verification problem <f1 & f2, M> is satisfied if and only if <f1, M> is satisfied and <f2, M> is satisfied.

- Cone of Influence Reduction
 - If f is an LTL formula that refers only to the variables in V, and C is the cone of influence of V, then <f, M> is satisfied if and only if <f, N> is satisfied, where N is the reduced model with respect to C.

Compositional Algorithm

- Input: A verification problem: <f, M>
- Algorithm:
 - Apply conjunctive reduction to the formula, thus producing a collection of “simpler” verification problems: <fi, M>
 - Apply cone of influence reduction to each of the simpler problems thus producing problems: <fi, Mi>
- Soundness theorem:
 - If f is an LTL formula, and M is a model, then <f, M> is satisfied if and only if each <fi, Mi> is satisfied.

Note: Soundness of this algorithm follows from the soundness of the reductions.

Outline

- Motivation and Goals
- Technical Background
- Comments on Our Work
- Issues and Proposals
Proving Compositional Algorithms

• The biggest stumbling block is the definition of the semantics of LTL.
 – LTL semantics are classically defined with respect to infinite sequences (paths).
 – The definitional equations require the use of recursion and quantification.
• We could not define the classical semantics of LTL in ACL2.

Eventually Periodic Paths

• These are special infinite paths with a finite prefix followed by a finite cycle (which is repeated forever).
• Known result:
 – If an LTL property does not hold for some infinite path in some model \(M \), there is an eventually periodic path in \(M \) for which \(f \) does not hold.

Modeling Semantics of LTL in ACL2

• Eventually periodic paths are finite structures.
 – We can represent them as ACL2 objects.
 – We define the semantics of LTL with respect to such structures.
 – We define the notion of a formula being true of a model by quantifying over all eventually periodic paths consistent with the model.
 – The known result guarantees this is equivalent to the standard semantics.

Issues with the Definition

• We verified our compositional algorithm to be sound using this definition.
• Observations on the proof:
 – The definition is more complicated to work with than the traditional definition.
 – The proofs of the reductions are very different from the standard proofs.
 – Some proofs, for example soundness of cone of influence, get much more complicated than the standard proofs.

Note: Details of the complications are in the paper.
Outline

• Motivation and Goals
• Technical Background
• Comments on Our Work
• Issues and Proposals

Principal Proposals

1. Addition of External Oracles
2. Reasoning about infinite sequences in ACL2

External Oracles

• We proved that the original verification problem is satisfied if and only if each of the “simpler” verification problems is satisfied.
• For a particular verification problem we want:
 – To use the algorithm to decompose it into a simpler problem.
 – To use an efficient model checker to model check each of the simpler problems.
• But we do not want to implement an efficient LTL model checker in ACL2.
 – There are trusted model checkers in the market to do the job.
 – As long as we believe that the external checkers satisfy the semantics we provided in ACL2, we should be allowed to invoke them.

Intermediate hack

• Define an executable function ltl-hack with a guard of T.
• Define axiom positing ltl-hack is logically equivalent to the logical definition of semantics of LTL.
• In the Lisp, replace the definition of ltl-hack to a syscall that calls the external model checker (Cadence SMV).
• We have used the composite system to check simple LTL properties of system models using our compositional algorithm.
Proposal: External Oracles

- Note that if `ltl-hack` is not an LTL model checker then the axiom posited makes the logic unsound.
 - We have never used the logical body of `ltl-hack`, but a hint expanding the body will enable you to prove nil!
- Can ACL2 give us a better way of integrating an external tool?
 - It is important for ACL2 not to be monolithic.
 - Other theorem provers like Isabelle have such capability.

Infinite Sequences: Recursion with Quantifiers

- To define the natural semantics of LTL, we need quantification with recursion (plus some axiomatization of infinite paths).
 - ACL2 does not allow recursion with quantification.
 - The addition of such facility violates “conservativity” of the logic.
- We have claimed that having addition of such facility is sound, though not conservative.
- Is it possible to reduce the restrictions imposed by ACL2?
 - Is such an extension possible with ACL2(R)?

Questions?