Certifying Compositional Model Checking Algorithms in ACL2

Sandip Ray
John Matthews
Mark Tuttle

ACL2 Workshop Presentation
July 14, 2003
Outline

• Motivation and Goals
• Technical Background
• Comments on Our Work
• Issues and Proposals
Model Checking

• A procedure for automatically deducing temporal properties of reactive computer systems.
 – The temporal properties are specified in some temporal logic (CTL, LTL etc.)
 – A computer system is specified as a Kripke Structure.
 – The properties are verified by intelligent and systematic graph search algorithms.
Model Checking: Good, Bad, & Ugly

• **Good:**
 – *If it works*, model checking (unlike theorem proving) is a push-button tool.

• **Bad:**
 – If the system is too large, model checking cannot be applied because of *state explosion*.

• **Ugly**
 – The system (and/or property) then needs to be suitably “abstracted” in order to use model checking.
Compositional Model Checking

• Replace the original verification problems by one or more “simpler” problems.
 – Exploit characteristics of the system like symmetry, cone of influence etc.
• Solve each simpler problem using model checking.

Can be used to verify considerably larger systems.
Verifying Compositional Algorithms

• Implementations of compositional algorithms are often complicated.
 – How do we insure that the algorithms themselves are sound?

• A plausible solution:
 – Use theorem proving to verify the algorithms.

• End Result:
 – A verified tool that can be effectively used to model check temporal properties of large systems.
Our Work

• A feasibility test for verifying compositional algorithms in ACL2.

• Goals:
 – Implement and verify a simple compositional algorithm based on two simple reductions.
 – Integrate the compositional algorithm with a state-of-the-art model checker (Cadence SMV) for efficiently solving the reduced problems.
Outline

- Motivation and Goals
- Technical Background
- Comments on Our Work
- Issues and Proposals
How Do we Verify Compositional Algorithms?

• Specify what it means to verify a temporal property of a system model.
 – Implement the semantics of model checking.

• Implement the compositional algorithms.
 – Recall that a compositional algorithm decomposes a verification problem into a number of “simpler” problems.

• Use theorem proving to show that solving the original problem is equivalent to solving all of the simpler problems (with respect to the semantics of model checking).
System Models

• A System is modeled by:
 – A collection of *state variables*. The *states* of the system are defined as the set of all possible assignments to these variables.
 – A description of how the variables are updated in the next state.
 – A set of *initial states* corresponding to the collection of possible evaluations at reset.
System Model Example

A very simple system:

boolean v1, v2, v3;
Repeat forever in parallel
 v1 = v2 & v3
 v2 = v1 & v3;
end.
Initial states: <000, 111>

Corresponding state representation.
Modeling Temporal Properties

• We use LTL formulas to model properties.

• An LTL formula is either:
 – Some state variable or the constants True, False.
 – A Boolean combination of LTL formulas.
 – The application of a temporal operator G, F, X, U, or W to an LTL formula.

• Example property for the simple system:
 F (¬ v1)
Semantics of LTL

- The semantics of LTL is specified with respect to (infinite) paths through the system model.
 - v is true of some path if v is assigned to true in the first state of the path. (True is true of every path.)
 - F stands for eventually:
 - $(F \ p)$ is true of some path iff p is true of some suffix of the path.
 - G stands for globally:
 - $(G \ p)$ is true of some path iff p is true of every suffix of the path.
- A formula is true of a model iff it is true of every path through the model.
- We will call the pair $<f, M>$ as a verification problem, if f is an LTL formula and M is a system model, and the verification problem is satisfied if f is true of M.
LTL Model Checking Example

- An Example Property:
 - Eventually v_1 becomes false.

- Counterexample!!!
 - Path through <111>

![Our Simple Model](image-url)
Compositional Algorithm

• Based on two simple reduction:
 – Conjunctive reduction
 – Cone of Influence Reduction
Conjunctive Reduction

• Replace the verification problem
 – \((f_1 \land f_2)\) is true of \(M\).

• With the two problems:
 – \(f_1\) is true of \(M\).
 – \(f_2\) is true of \(M\).
Cone of Influence Reduction

A Simple System Model

Boolean v1, v2, v3, v4, v5, v6;
Repeat forever in parallel:
 v1 = v2;
 v2 = v1 & v3;
 v3 = v1 & v2;
 v4 = v5 & v3;
 v5 = v4 & v6;
End.

(F (~ v1)): v1 will eventually become False.

A Simple LTL property

Cone of Influence Reduction

Boolean v1, v2, v3;
Repeat forever in parallel:
 v1 = v2;
 v2 = v1 & v3;
End.
Soundness of Reductions

- Conjunctive Reduction
 - The verification problem $<(f_1 \& f_2), M>$ is satisfied if and only if $<f_1, M>$ is satisfied and $<f_2, M>$ is satisfied.

- Cone of Influence Reduction
 - If f is an LTL formula that refers only to the variables in V, and C is the cone of influence of V, then $<f, M>$ is satisfied if and only if $<f, N>$ is satisfied, where N is the reduced model with respect to C.
Compositional Algorithm

- **Input**: A verification problem: \(<f, M>\)
- **Algorithm**:
 - Apply conjunctive reduction to the formula, thus producing a collection of “simpler” verification problems: \(<f_i, M>\)
 - Apply cone of influence reduction to each of the simpler problems thus producing problems: \(<f_i, M_i>\)
- **Soundness theorem**:
 - If \(f\) is an LTL formula, and \(M\) is a model, then \(<f, M>\) is satisfied if and only if each \(<f_i, M_i>\) is satisfied.

Note: Soundness of this algorithm follows from the soundness of the reductions.
Outline

• Motivation and Goals
• Technical Background
• Comments on Our Work
• Issues and Proposals
Proving Compositional Algorithms

• The biggest stumbling block is the definition of the semantics of LTL.
 – LTL semantics are classically defined with respect to infinite sequences (paths).
 – The definitional equations require the use of recursion and quantification.

• We could not define the classical semantics of LTL in ACL2.
Eventually Periodic Paths

• These are special infinite paths with a finite prefix followed by a finite cycle (which is repeated forever).

• Known result:
 – If an LTL f property does not hold for some infinite path in some model M, there is an eventually periodic path in M for which f does not hold.
Modeling Semantics of LTL in ACL2

- Eventually periodic paths are finite structures.
 - We can represent them as ACL2 objects.
 - We define the semantics of LTL with respect to such structures.
 - We define the notion of a formula being true of a model by quantifying over all eventually periodic paths consistent with the model.
 - The known result guarantees this is equivalent to the standard semantics.
Issues with the Definition

• We verified our compositional algorithm to be sound using this definition.

• Observations on the proof:
 – The definition is more complicated to work with than the traditional definition.
 – The proofs of the reductions are very different from the standard proofs.
 – Some proofs, for example soundness of cone of influence, get much more complicated than the standard proofs.

Note: Details of the complications are in the paper.
Outline

- Motivation and Goals
- Technical Background
- Comments on Our Work
- Issues and Proposals
Principal Proposals

1. Addition of External Oracles
2. Reasoning about infinite sequences in ACL2
External Oracles

• We proved that the original verification problem is satisfied if and only if each of the “simpler” verification problems is satisfied.

• For a particular verification problem we want:
 – To use the algorithm to decompose it into a simpler problem.
 – To use an efficient model checker to model check each of the simpler problems.

• But we do not want to implement an efficient LTL model checker in ACL2.
 – There are trusted model checkers in the market to do the job.
 – As long as we believe that the external checkers satisfy the semantics we provided in ACL2, we should be allowed to invoke them.
Intermediate hack

- Define an executable function `ltl-hack` with a guard of `T`.
- Define axiom positing `ltl-hack` is logically equivalent to the logical definition of semantics of LTL.
- In the Lisp, replace the definition of `ltl-hack` to a syscall that calls the external model checker (Cadence SMV).
- We have used the composite system to check simple LTL properties of system models using our compositional algorithm.
Proposal: External Oracles

- Note that if ltl-hack is not an LTL model checker then the axiom posited makes the logic unsound.
 - We have never used the logical body of ltl-hack, but a :use hint expanding the body will enable you to prove nil!

- Can ACL2 give us a better way of integrating an external tool?
 - It is important for ACL2 not to be monolithic.
 - Other theorem provers like Isabelle have such capability.
Infinite Sequences: Recursion with Quantifiers

- To define the natural semantics of LTL, we need quantification with recursion (plus some axiomatization of infinite paths).
 - ACL2 does not allow recursion with quantification.
 - The addition of such facility violates “conservativity” of the logic.
- We have claimed that having addition of such facility is sound, though not conservative.
- Is it possible to reduce the restrictions imposed by ACL2?
 - Is such an extension possible with ACL2(R)?
Questions?