1. Problem 10.1
Householder reflector $F = I - 2 \frac{vv^*}{v^*v}$, where $v \in \mathbb{C}^m$. Now, $Fv = -v$. Also, $Fu = u, \forall u$ orthogonal to v. Let U be an orthonormal basis of the $m-1$ dimensional subspace orthogonal to v. Thus, eigenvalue decomposition of F is given by $F = [v \ U] \Lambda [v \ U]^*$, where Λ is a diagonal matrix with $\Lambda_{11} = -1$ and $\Lambda_{ii} = 1, \forall i > 1$. Now, $\det(F) = \prod_{i=1}^{m} \Lambda_{ii} = -1$. All the singular values are equal to 1.

2. Problem 10.4
(a) Consider a two-dimensional vector $v = \begin{bmatrix} r \cos \phi \\ r \sin \phi \end{bmatrix}$. Now $Fv = \begin{bmatrix} -r \cos(\phi + \theta) \\ r \sin(\phi + \theta) \end{bmatrix}$. Similarly, $Jv = \begin{bmatrix} r \cos(\phi - \theta) \\ r \sin(\phi - \theta) \end{bmatrix}$. Thus, F rotates v anticlockwise by the angle θ and then reflects it along the y-axis. Similarly, J rotates every vector v clockwise by the angle θ.
(b) for $j=1$ to n
 for $i=m$ to $j+1$
 $r = \sqrt{A(i-1,j)^2 + A(i,j)^2}$
 $c = A(i-1,j)/r, \ s = A(i,j)/r$
 Form $J = \begin{bmatrix} c & s \\ -s & c \end{bmatrix}$
 $A(i-1 : i, j : n) = JA(i-1 : i, j : n)$
 end for
end for
(c) Number of floating point operations (flops) to form J: 4 multiplication, 1 addition, 1 square root. Each J makes one of the entries of A zero. Hence, the number of flops required per entry is 6.