Sample Solutions to Homework #2

1. (Section 3.6, Exercise 2, page 290) We use IF to denote the whole if statement. To prove \(\{ \text{true} \} \text{ IF } \{ x \geq 0 \} \), we need to prove \(\text{true} \Rightarrow wp(IF, x \geq 0) \). We first use the \(wp \) method to compute:

\[
\begin{align*}
wp(IF, x \geq 0) & \equiv \{ wp \text{ for if statements} \} \\
& \equiv (x < 0 \land wp(x := 0, x \geq 0)) \lor (x \geq 0 \land wp(\text{skip}, x \geq 0)) \\
& \equiv \{ wp \text{ for assignments and skip} \} \\
& \equiv (x < 0 \land 0 \geq 0) \lor (x \geq 0 \land x \geq 0) \\
& \equiv \{ \text{arithmetic; logic} \} \\
& \equiv x < 0 \lor x \geq 0 \\
& \equiv \{ \text{logic} \} \\
& \text{true},
\end{align*}
\]

and clearly, \(\text{true} \Rightarrow \text{true} \). The correctness of the code with respect to the given pre- and post-conditions is thus established.

2. (Section 3.6, Exercise 6, page 290) We again use IF to denote the whole if statement. To prove \(\{ \text{true} \} \text{ IF } \{ y = 2 \} \), we need to prove \(\text{true} \Rightarrow wp(IF, y = 2) \). We first compute:

\[
\begin{align*}
wp(IF, x \geq 0) & \equiv \{ wp \text{ for if statements; simplification of conditions} \} \\
& \equiv (x < 0 \land wp(y := -2|x|/x, y = 2)) \lor (x > 0 \land wp(y := 2|x|/x, y = 2)) \lor (x = 0 \land wp(y := 2, y = 2)) \\
& \equiv \{ wp \text{ for assignment statements} \} \\
& \equiv (x < 0 \land -2|x|/x = 2) \lor (x > 0 \land 2|x|/x = 2) \lor (x = 0 \land 2 = 2) \\
& \equiv \{ \text{arithmetic and logic; since } x < 0 \Rightarrow -2|x|/x = 2, \text{ hence } x < 0 \land -2|x|/x = 2 \equiv x < 0 \} \\
& \equiv x < 0 \land x > 0 \lor x = 0 \\
& \equiv \{ \text{logic} \} \\
& \text{true},
\end{align*}
\]

and clearly, \(\text{true} \Rightarrow \text{true} \). The correctness of the code with respect to the given pre- and post-conditions is thus established.

3. (Section 3.6, Exercise 12, page 290) We choose (after a few trials and failures) \(a = dq + r \land r \geq 0 \) to be our loop invariant \(I \). (Note that there may be other loop invariants.) To prove the correctness of the code, we need to prove three claims.
1. \{a > 0 \land b > 0\} \ r := a; \ q := 0 \ \{I\}

To prove this claim, we first compute:

\[
wp(r := a; \ q := 0, I) \\
\equiv \wp \text{ for sequencing} \\
wp(r := a, wp(q := 0, I)) \\
\equiv \wp \text{ for assignments; simplification} \\
wp(r := a, a = r \land r \geq 0) \\
\equiv \wp \text{ for assignments} \\
a = a \land a \geq 0 \\
\equiv \text{arithmetic; logic} \\
a \geq 0
\]

We then need to prove: \(a > 0 \land b > 0 \Rightarrow a \geq 0\), which is clearly true by arithmetic.

2. \{I \land r \geq d\} \ r := r - d; \ q := q + 1 \ \{I\}

To prove this claim, we first compute:

\[
wp(r := r - d; \ q := q + 1, I) \\
\equiv \wp \text{ for sequencing} \\
wp(r := r - d, wp(q := q + 1, I)) \\
\equiv \wp \text{ for assignments} \\
wp(r := r - d, a = d(q + 1) + r \land r \geq 0) \\
\equiv \wp \text{ for assignments} \\
a = d(q + 1) + (r - d) \land r \geq 0 \\
\equiv \text{simplification} \\
a = dq + r \land r \geq 0,
\]

which is just \(I\). We next need to prove: \(I \land r \geq d \Rightarrow I\), which is again clearly true by weakening in logic.

3. \{I \land r < d\} \Rightarrow \{a = dq + r \land 0 \leq r < d\}

It is straightforward to see that

\[
I \land r < d \\
\equiv \{I \equiv a = dq + r \land r \geq 0\} \\
a = dq + r \land 0 \leq r < d,
\]

which is the same as the right hand side, thus proving the claim.

4. (a) By the definition of the \(M\) function, \(M(n) = n - 10\), for all \(n \geq 101\). We use strong induction to prove that \(M(n) = 91\), for all \(n \leq 101\). (Note that when \(n = 101\), \(n - 10 = 91\), so the two definitions, i.e., \(M(n) = n - 10\) and \(M(n) = 91\), do not conflict.) Inducting on \(n\) involves a technique called “reverse induction,” where the value of \(n\) decreases, instead of increases. To
avoid this complexity, we let $n = 101 - k$ and we do strong induction on k (so that when k
increases, n decreases). We first prove the base case, which involves 11 (not just one) values
of k. Consider $k = 0, 1, \ldots, 10$, in that order. When $k = 0$, $M(101 - k) = M(101) = 91$.
When $k = 1$, $M(101 - k) = M(100) = M(M(111)) = M(101) = 91$. Using a similar method,
we can verify that $M(101 - k) = 91$ for all $k = 0, 1, \ldots, 10$. We next carry out the inductive
step. Let $k > 10$ and assume that $M(101 - \ell) = 91$ for all $0 \leq \ell < k$. We need to prove that
$M(101 - k) = 91$. We observe that
\[
M(101 - k) \\
= \{\text{since } k > 10, \text{ hence } 101 - k \leq 100; \text{ by the definition of } M\} \\
M(M(101 - k + 11)) \\
= \{\text{arithmetic}\} \\
M(M(101 - (k - 11))) \\
= \{\text{treat } k - 11 \text{ as } \ell, \text{ and observe that } 0 \leq \ell < k; \text{ inductive hypothesis}\} \\
M(91) \\
= \{\text{base case}\} \\
91.
\]
This completes the inductive step and the whole proof.

(b) The iterative implementation is given in class, repeated here.
\[
\begin{align*}
i &:= 1; \\
\textbf{while} \ (i > 0) \ {\{} \\
\text{if} \ (n > 100) \ {\{} n := n - 10; \ i := i - 1 \ {\}} \\
\text{else} \ {\{} n := n + 11; \ i := i + 1 \ {\}} \\
{\}}
\end{align*}
\]

(c) The key part is to find an appropriate loop invariant. Consider $M(N) = M^{(i)}(n) \land i \geq 0$
as the loop invariant I (there may be other possible loop invariants), where $M^{(i)}(n)$ means
applying M to n for i times. We use IF to denote the if statement inside the loop. We then
need to prove three claims:

1. $\{n = N\} i := 1 \ {I}\$
 To prove this claim, we need to prove $n = N \Rightarrow \text{wp}(i := 1, I)$. We first compute:
 \[
 \text{wp}(i := 1, I) \\
 \equiv \{I \equiv M(N) = M^{(i)}(n) \land i \geq 0\} \\
 \text{wp}(i := 1, M(N) = M^{(i)}(n) \land i \geq 0) \\
 \equiv \{\text{wp for assignments}\} \\
 M(N) = M(n) \land 1 \geq 0 \\
 \equiv \{\text{arithmetic}\} \\
 M(N) = M(n).
 \]
 Thus, we need to prove $n = N \Rightarrow M(N) = M(n)$, which is immediately true.
2. \(\{ I \land i > 0 \} \) IF \(\{ I \} \)

To prove this claim, we need to prove \(I \land i > 0 \Rightarrow wp(\text{IF}, I) \). We first compute:

\[
wp(\text{IF}, I) \\
\equiv \{ wp \text{ for } IF \} \\
\quad (n > 100 \land wp(n := n - 10; \; i := i - 1, I)) \lor \\
\quad (n \leq 100 \land wp(n := n + 11; \; i := i + 1, I)) \\
\equiv \{ wp \text{ for sequencing} \} \\
\quad (n > 100 \land wp(n := n - 10, wp(i := i - 1, I))) \lor \\
\quad (n \leq 100 \land wp(n := n + 11, wp(i := i + 1, I))) \\
\equiv \{ wp \text{ for assignments} \} \\
\quad (n > 100 \land M(N) = M^{(i-1)}(n) \land i - 1 \geq 0) \lor \\
\quad (n \leq 100 \land M(N) = M^{(i+1)}(n) \land i + 1 \geq 0) \\
\quad \text{(strengthening, because } i \geq 1 \Rightarrow i \geq -1) \\
\quad (n > 100 \land M(N) = M^{(i-1)}(n - 10) \land i \geq 1) \lor \\
\quad (n \leq 100 \land M(N) = M^{(i+1)}(n + 11) \land i \geq 1) \\
\quad \text{(definition of } M; \; n > 100 \Rightarrow n - 10 = M(n); \; n \leq 100 \Rightarrow M(M(n + 11)) = M(n)) \\
\quad (n > 100 \land M(N) = M^{(i)}(n) \land i \geq 1) \lor \\
\quad (n \leq 100 \land M(N) = M^{(i)}(n) \land i \geq 1) \\
\equiv \{ \text{simplification; logic} \} \\
\quad M(N) = M^{(i)}(n) \land i \geq 1.
\]

We then need to prove \(I \land i > 0 \Rightarrow M(N) = M^{(i)}(n) \land i \geq 1 \), which is immediately true. Hence, \(I \land i > 0 \Rightarrow wp(\text{IF}, I) \).

3. \(I \land i \leq 0 \Rightarrow n = M(N) \)

This claim is true, because

\[
I \land i \leq 0 \\
\equiv \{ I \equiv M(N) = M^{(i)}(n) \land i \geq 0 \} \\
\quad M(N) = M^{(i)}(n) \land i \geq 0 \land i \leq 0 \\
\equiv \{ \text{arithmetic} \} \\
\quad M(N) = M^{(i)}(n) \land i = 0 \\
\equiv \{ \text{logic} \} \\
\quad M(N) = M^{(0)}(n) = n.
\]

(d) One possible potential function (there may be others) is: \(\Delta = 2|n - 111| + 21i \). To see this indeed is a potential function, first note that \(\Delta \) is always non-negative. Next, if IF takes the first branch, then \(2|n - 111| \) increases by at most 20 because \(|n - 111| \) increases by at most 10, while \(21i \) decreases by exactly 21 because \(i \) decreases by exactly 1. Hence, \(\Delta \) decreases by at least 1. If IF takes the second branch, then \(2|n - 111| \) decreases by exactly 22 because \(|n - 111| \) decreases by exactly 11, and \(21i \) increases by exactly 21 because \(i \) increases by exactly 1. Thus, \(\Delta \) decreases by exactly 1. Hence, \(\Delta \) decreases at each iteration and is always non-negative. Thus, by the potential function argument, the loop terminates eventually.