Test #2

Instructions. This is a 75-minute test. There are seven questions worth a total of 60 points. All program variables appearing in this test should be assumed to be of type integer.

<table>
<thead>
<tr>
<th>Question</th>
<th>Score</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>60</td>
</tr>
</tbody>
</table>
1. **(8 points total)** In each of the following two parts, let S be a given program and let q be a given postcondition.

 (a) (4 points) Characterize the set of program states belonging to $wp(S, q)$ in terms of execution of program S. (Remark: Recall that $wp(S, q)$ is a state predicate, and as such it may be viewed as a set of program states.)

 (b) (4 points) What are the two main steps involved in establishing the partial correctness of S with respect to precondition p and postcondition q using the weakest precondition method?

2. **(8 points total)**

 (a) (4 points) Explain how to determine the weakest precondition of a program S with respect to a given postcondition q in the case where S consists of a single assignment statement.

 (b) (4 points) Use the approach of part (a) to compute $wp(x := x + y, x > 2y)$. Simplify your final answer as much as possible.
3. (12 points total)

(a) (4 points) Let S_1 and S_2 be two programs and let $S = S_1; S_2$. Let q be a given postcondition. Express $wp(S, q)$ as a function of S_1, S_2, and q (and using one or more applications of wp).

(b) (4 points) Let S_1, S_2, and S_3 be three programs and let $S = S_1; S_2; S_3$. Let q be a given postcondition. Express $wp(S, q)$ as a function of S_1, S_2, S_3, and q (and using one or more applications of wp).

(c) (4 points) Use the approach of part (b) to compute $wp(S, x > y)$ where S is $z := x + y; x := y + z; y := x + z$. Simplify your final answer as much as possible.

4. (8 points total)

(a) (4 points) Let S_1 and S_2 be two programs, let C be a boolean condition, and let S be the program $\text{if } (C) \text{ then } S_1 \text{ else } S_2$. Let q be a given postcondition. Express $wp(S, q)$ as a function of S_1, S_2, and q (and using one or more applications of wp).

(b) (4 points) Use the approach of part (a) to compute $wp(S, x > y)$ where S is the program $\text{if } (x \leq y) \text{ then } x := y \text{ else } x := x + y$. Simplify your final answer as much as possible.
5. (10 points) Let \(S_1 \) and \(S_2 \) be two programs, let \(C \) be a boolean condition, and let \(S \) be the program \(S_1 \); \textbf{while} \((C) \) \(S_2 \). Suppose that we wish to use the weakest preconditon method along with the loop invariant technique to prove the partial correctness of \(S \) with respect to a given precondition \(p \) and postcondition \(q \). What are the main steps of such a proof?

6. (4 points) Give an example of a program \(S \), precondition \(p \), and postcondition \(q \) such that \(S \) is partially correct, but not totally correct, with respect to precondition \(p \) and postcondition \(q \).
7. (10 points) Use a potential function argument to prove that the following program terminates from any initial program state.

\[m := 0; \]
\[\textbf{while} \ (n > 0) \]
\[\quad \textbf{if} \ (m < n) \ \textbf{then} \]
\[\quad \quad m := m + 1 \]
\[\quad \textbf{else} \{ \]
\[\quad \quad m := 0; \]
\[\quad \quad n := n - 1 \]
\[\} \]

It can be shown that the state predicate

\[0 \leq m \leq n \]

is a loop invariant of the above \texttt{while} loop; feel free to make use of this fact in your proof. Hint: Make use of the potential function

\[f(m, n) = \frac{(n + 1)(n + 2)}{2} - m. \]