Regular Expressions

Greg Plaxton
Theory in Programming Practice, Fall 2005
Department of Computer Science
University of Texas at Austin
What is a Regular Expression?

• A regular expression defines a (possibly infinite) set of strings over a given alphabet

• Analogous to an arithmetic expression
 – The symbols of the alphabet are analogous to the numerical constants in an arithmetic expression
 – Instead of arithmetic operators such as addition, multiplication, and exponentiation, the operators are concatenation, union, and closure
Regular Expressions: Syntax

- The symbols \emptyset (empty set), ϵ (empty string), and any symbol of the alphabet are regular expressions.

- For any regular expressions p and q, (pq) (concatenation) and $(p \mid q)$ (union) are regular expressions.

- For any regular expression p, p^* (Kleene closure) is a regular expression.
Regular Expressions: Semantics

- The regular expression \emptyset corresponds to the empty set of strings.
- The regular expression ϵ corresponds to the set of strings $\{\epsilon\}$.
- For any symbol a in the alphabet, the regular expression a corresponds to the set of strings $\{a\}$.
- For any regular expressions p and q with corresponding sets of strings X and Y, the regular expression (pq) (resp., $(p \mid q)$) denotes the set of strings $\{xy \mid x \in X \land y \in Y\}$ (resp., $X \cup Y$).
- For any regular expression p with corresponding set of strings X, the regular expression p^* denotes the set of strings $\{x_1x_2\cdots x_k \mid k \geq 0 \land (\forall i : 1 \leq i \leq k : x_i \in X)\}$.
Regular Expressions: Parenthesization

- When writing a regular expression, we generally try to omit as many parentheses as possible without altering the meaning of the expression.

- Where parentheses are omitted, Kleene closure has the highest binding power, then concatenation, then union.
 - Parentheses may be omitted whenever this convention yields the intended parenthesization.

- Note that concatenation and union are associative.
 - These facts often enable us to drop parentheses, e.g., we can write abc instead of $((ab)c)$.

Theory in Programming Practice, Plaxton, Fall 2005
A Remark on Kleene Closure

• One can think of Kleene closure as follows:

\[p^* = \epsilon \mid p \mid pp \mid ppp \mid \ldots \]

• The RHS above is not a regular expression because it has an infinite number of terms
 – It is straightforward to prove by induction that every regular expression has a finite length

• The motivation for introducing the Kleene closure operator is to make the above RHS into a regular expression
Regular Expressions: Examples

• What is the set of strings corresponding to the regular expression $a \mid bc^*d$?

• It is often convenient to introduce identifiers to stand for certain regular expressions and then to use these identifiers as a shorthand for building up more complex regular expressions
 - $PosDigit = 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$
 - $Digit = 0 \mid PosDigit$
 - $Natural = 0 \mid PosDigit\ Digit^*$

• The set of strings over the lowercase English alphabet containing all five vowels in order corresponds to the regular expression

$$ (Letter^*)a(Letter^*)e(Letter^*)i(Letter^*)o(Letter^*)u(Letter^*) $$

where

$$ Letter = a \mid b \mid c \mid \ldots \mid z $$
A More Elaborate Example

- For any binary string x, let $f(x)$ denote the nonnegative integer corresponding to x
 - Example: If $x = 00110$, then $f(x) = 6$

- Problem: Construct a regular expression corresponding to the set of all binary strings x such that $f(x)$ is a multiple of 3
 - We first inductively define the sets B_0, B_1, and B_2 of all binary strings x such that $f(x)$ is congruent to 0, 1, and 2, respectively, modulo 3
 - We then deduce a regular expression for B_0
Inductive Definition of Sets B_0, B_1, and B_2

(0) The empty string belongs to B_0

(1) For any binary string x in B_0, $x0$ belongs to B_0 and $x1$ belongs to B_1

(2) For any binary string x in B_1, $x0$ belongs to B_2 and $x1$ belongs to B_0

(3) For any binary string x in B_2, $x0$ belongs to B_1 and $x1$ belongs to B_2
Characterization of B_2 in Terms of B_1

- By (2) and (3), any binary string in B_2 is either of the form $x0$ where x belongs to B_1, or is of the form $x1$ where x belongs to B_2
- It follows that B_2 consists of all binary strings of the form $x01^*$ where x belongs to B_1
Characterization of B_1 in terms of B_0

- By (1), (3), and the preceding characterization of B_2, any binary string in B_1 is either of the form $x1$ where x belongs to B_0, or is of the form $x01^*0$ where x belongs to B_1.

- It follows that B_1 consists of all binary strings of the form $x1(01^*0)^*$ where x belongs to B_0.

Theory in Programming Practice, Plaxton, Fall 2005
Deducing a Regular Expression for B_0

- By (0), (1), (2), and the preceding characterization of B_1, the set B_0 consists of the empty string, all binary strings of the form $x0$ where x belongs to B_0, and all binary strings of the form $x1(01^*0)^*1$ where x belongs to B_0.

- It follows that B_0 consists of all binary strings of the form

$$ (0 \mid 1(01^*0)^*1)^* $$
Remark: Alternative View of the Preceding Example

- The binary strings in B_0 may be viewed as being generated by the grammar

$$
\begin{align*}
S & \rightarrow B_0 \\
B_0 & \rightarrow \epsilon \mid B_00 \mid B_11 \\
B_1 & \rightarrow B_01 \mid B_20 \\
B_2 & \rightarrow B_10 \mid B_21
\end{align*}
$$

- As we have seen, the above grammar generates a regular language

- Not all grammars generate regular languages