String Matching: Knuth-Morris-Pratt Algorithm

Greg Plaxton
Theory in Programming Practice, Fall 2005
Department of Computer Science
University of Texas at Austin
Some Notation

- We index the symbols in a string starting at 0.

- For any string s, let \bar{s} denote the length of s.

- For any string s and integer i such that $0 \leq i < \bar{s}$, let $s[i]$ denote the symbol of s with index i.

- For any string s and integers i and j such that $0 \leq i < \bar{s}$ and $i \leq j \leq \bar{s}$, $s[i..j]$ denotes the (possibly empty) substring of s starting at index i and ending just before j.

 - $s[2..2]$ is the empty string.

 - $s[0..\bar{s}] = s$.

Theory in Programming Practice, Plaxton, Fall 2005
The (Exact) String Matching Problem

• Given a text string t and a pattern string p, find all occurrences of p in t
Three Efficient String Matching Algorithms

• Rabin-Karp
 – This is a simple randomized algorithm that tends to run in linear time in most scenarios of practical interest
 – The worst case running time is as bad as that of the naive algorithm, i.e., $\Theta(p \cdot t)$

• Knuth-Morris-Pratt (this lecture and the next)
 – The worst case running time of this algorithm is linear, i.e., $O(p + t)$

• Boyer-Moore
 – This algorithm tends to have the best performance in practice, as it often runs in sublinear time
 – The worst case running time is as bad as that of the naive algorithm
The KMP String Matching Algorithm: Plan

• We maintain two indices, ℓ and r, into the text string

• We iteratively update these indices and detect matches such that the following loop invariant is maintained

 – KMP Invariant: $\ell \leq r$, $t[\ell..r] = p[0..r - \ell]$, and all occurrences of the pattern p starting prior to ℓ in the text t have been detected

• We ensure that the invariant holds initially by setting ℓ and r to zero

• Remark: We will see later that the algorithm also requires a preprocessing phase involving only the pattern string p
Achieving Linear Time Complexity: The Plan

• The algorithm performs only a constant amount of computation in each iteration

• The algorithm never decreases ℓ or r

• In each iteration, either ℓ or r is increased

• Note that the indices ℓ and r are at most \bar{t}

• By the KMP invariant, all matches have been detected once ℓ reaches \bar{t}, so we can terminate at that point

• The preprocessing phase, which involves only p, runs in $O(\bar{p})$ time
KMP Iteration

• Let’s see how to define an iteration of the KMP loop
• Assume the KMP invariant holds at the beginning of the iteration
• Since the loop has not terminated, \(\ell < \bar{t} \)
• We’d like to increase \(\ell \) or \(r \), while maintaining the invariant
• There are two cases to consider
 – Case 1: \(0 \leq r - \ell < \bar{p} \), i.e., we do not yet know whether there is a match starting at index \(\ell \)
 – Case 2: \(r - \ell = \bar{p} \), i.e., we have found a match starting at index \(\ell \)
Case 1: \(0 \leq r - \ell < p\)

- **Case 1.1:** \(t[r] = p[r - \ell]\)
 - We've matched another symbol; increment \(r\)

- **Case 1.2:** \(r = \ell\) and \(t[r] \neq p[r - \ell]\)
 - Our current match is the empty string and the next symbol does not match \(p[0]\); increment \(\ell\) and \(r\)

- **Case 1.3:** \(r > \ell\) and \(t[r] \neq p[r - \ell]\)
 - Our current match is a nonempty proper prefix of \(p\) and the next symbol does not extend this match
 - How should we update \(\ell\) and \(r\) in this remaining subcase?
Case 1.3: $0 \leq r - \ell < \bar{p}$, $r > \ell$, and $t[r] \neq p[r - \ell]$

- Our current match u is a nonempty proper prefix of p and the next symbol does not extend this match

- We cannot set ℓ to r because we might skip over one or more matches
 - Example: Suppose p is $axbcyaxbts$ and we’ve already matched $axbcyaxb$, but the next symbol is not t
 - In this example, we advance ℓ by 5

- In general, we advance ℓ by the smallest $k > 0$ such that the suffix $v = u[k..\bar{u}]$ of u is a prefix of p

- Note that v is simply the longest string that is both a proper prefix and a proper suffix of u
 - This string is called the core of u, denoted $c(u)$
 - Later we will discuss how the KMP algorithm computes such cores
Case 2: \(r - \ell = \bar{p} \)

- We output that a match exists starting at index \(\ell \)
- How do we update \(\ell \) and \(r \)?
- Note that this case is very similar to Case 1.3 treated earlier
- We increase \(\ell \) by \(\bar{p} - c(p) \)
Core Computation

- It remains only to describe how the KMP algorithm computes the cores required in Cases 1.3 and 2
- Recall that each iteration of KMP is supposed to run in a constant number of operations
- How can we hope to compute the core of a string in constant time?
KMP Core Computation: A Key Observation

• Note that in Case 1.3 we need to compute the core of some proper prefix of p, while in Case 2 we need to compute the core of p

• Thus, if we precompute the core of every prefix of p, we will be able to execute each iteration of the KMP loop in constant time

• It remains to prove that we can compute the core of every prefix of p in $O(p)$ time
Some Properties of Core

- Let $u \preceq v$ mean that u is both a prefix and a suffix of v
 - For any string u, $\epsilon \preceq u$
 - The \preceq relation is a partial order
- Let $u \prec v$ denote $u \preceq v$ and $u \neq v$
- The core $c(v)$ of a string v is the unique string such that for all strings u
 \[u \preceq c(v) \equiv u \prec v \]
 - It follows, by replacing u with $c(v)$, that $c(v) \prec v$ and hence $\overline{c(v)} < \overline{v}$
- Let $c^0(u)$ denote u and for any $i \geq 0$ such that $c^i(v)$ is a nonempty string, let $c^{i+1}(u)$ denote $c(c^i(u))$
A Key Property

- Claim: For any \(u \) and \(v \), \(u \preceq v \equiv \langle \exists i : 0 \leq i : u = c^i(v) \rangle \)

- The proof is by induction on the length of \(v \)

- Base case (\(\bar{v} = 0 \)):

\[
\begin{align*}
 u \preceq v \\
\equiv \{ \bar{v} = 0, \text{i.e., } v = \epsilon \} \\
\{ u = \epsilon \land v = \epsilon \} \\
\equiv \{ \text{definition of } c^0: v = \epsilon \Rightarrow c^i(v) \text{ is defined for } i = 0 \text{ only} \} \\
\langle \exists i : 0 \leq i : u = c^i(v) \rangle
\end{align*}
\]
Induction Step: $\overline{v} = n + 1$, $n \geq 0$

\[
\begin{align*}
 u & \preceq v \\
 \equiv & \{ \text{definition of } \preceq \} \\
 & u = v \land u < v \\
 \equiv & \{ \text{definition of core} \} \\
 & u = v \lor u \preceq c(v) \\
 \equiv & \{ c(v) < \overline{v}; \text{ induction hypothesis on second term} \} \\
 & u = v \lor \langle \exists i : 0 \leq i : u = c^i(c(v)) \rangle \\
 \equiv & \{ \text{rewrite} \} \\
 & u = c^0(v) \lor \langle \exists i : 0 < i : u = c^i(v) \rangle \\
 \equiv & \{ \text{rewrite} \} \\
 & \langle \exists i : 0 \leq i : u = c^i(v) \rangle
\end{align*}
\]