Error Detection and Correction: Hamming Code; Reed-Muller Code

Greg Plaxton
Theory in Programming Practice, Spring 2005
Department of Computer Science
University of Texas at Austin
Hamming Code: Motivation

• Assume a word size of k

• Recall parity check coding
 – Send one additional bit per word, the parity bit
 – Allows detection (but not correction) of a single error (bit flip) in the $k + 1$ bits transmitted

• Hamming code
 – Send ℓ additional bits per word, called the check bits
 – Allows correction of a single error in the $k + \ell$ bits transmitted

Hamming Code: Determining The Number of Check Bits

• We choose \(\ell \) as the least positive integer such that the binary representation of \(k + \ell \) has \(\ell \) bits

 – Exercise: Prove that such an \(\ell \) is guaranteed to exist

 – Examples: If \(k = 1 \), we set \(\ell \) to 2 since \(k + \ell = 3 = 11_2 \); if \(k = 2 \), we set \(\ell \) to 3 since \(k + \ell = 5 = 101_2 \); if \(k = 4 \), we set \(\ell \) to 3 since \(k + \ell = 7 = 111_2 \)

• What is the maximum number of data bits \(k \) corresponding to a given number of check bits \(\ell \)?

 – The positive numbers with \(\ell \)-bit binary representations range from \(2^{\ell-1} \) to \(2^\ell - 1 \)

 – So we need \(k + \ell \leq 2^\ell - 1 \), i.e., \(k \leq 2^\ell - \ell - 1 \)
Hamming Code: The Construction

- Index the $k + \ell$ bit positions from 1 to $k + \ell$

- Put the ℓ check bits in positions with indices that are powers of 2, i.e.,
 $2^0 = 1 = 1_2$, $2^1 = 2 = 10_2$, $2^2 = 4 = 100_2$, $2^3 = 8 = 1000_2$, . . .

- Put the k data bits in the remaining positions (preserving their order, say)

- Choose values for the check bits so that the XOR of the indices of all 1 bits is zero
 - Can we always find such a setting of the check bits?
 - Is this setting unique?
Hamming Code: Decoding

• We’d like to argue that if 0 or 1 bit flips occur in transmission of the encoded bit string of length $k + \ell$, then the decoder can uniquely determine the original k data bits.

• The decoder first computes the XOR of the indices of all 1 bits in the (possibly corrupted) string of length $k + \ell$ that it receives:
 – If no errors occurred in transmission, the XOR is zero.
 – If a 0 flipped to a 1 in bit position i, the XOR is i.
 – If a 1 flipped to a 0 in bit position i, the XOR is i.

• So what rule should the decoder use to determine the original k data bits?
Reed-Muller Code: Motivation

• So far we’ve seen efficient codes for detecting a single error (parity check code) and for correcting a single error (Hamming code)

• What if we want to be able to detect or correct a large number of errors?
 – We need to find a set of codewords such that the minimum Hamming distance between any two codewords is large

• For any nonnegative integer \(n \), the Reed-Muller code defines \(2^n \) codewords of length \(2^n \) such that the Hamming distance between any two codewords is exactly \(2^{n-1} \)
 – How many errors can be detected (as a function of \(n \))?
 – How many errors can be corrected (as a function of \(n \))?
Reed-Muller Code: Hadamard Matrices

- The Reed-Muller code is based on Hadamard matrices

- We now inductively define a $2^n \times 2^n$ Hadamard matrix H_n for each nonnegative integer n
 - $H_0 = [1]$
 - H_{n+1} is formed by putting a copy of H_n into each quadrant, and complementing the copy placed in the lower-right quadrant

- For any nonnegative integer n, the 2^n codewords of length 2^n of the corresponding Reed-Muller code are simply the rows of H_n
 - It remains to argue that the Hamming distance between any two codewords is exactly 2^{n-1}
Reed-Muller Code: Proof of the Hamming Distance Property

- We prove the claim by induction on $n \geq 0$

- Base case: H_0 has only one row, so any claim regarding all pairs of rows holds vacuously

- Induction hypothesis: Assume that for some nonnegative integer n, the Hamming distance between any two rows of H_n is 2^{n-1}

- Induction step
 - Consider rows i and j (numbering from 1, say) of H_{n+1}, where $i < j$
 - Verify that the Hamming distance between rows i and j is 2^n in each of the following cases: (1) $j \leq 2^n$; (2) $i > 2^n$; (3) $i \leq 2^n$ and $j = 2^n + i$; (4) $i \leq 2^n$ and $j \geq 2^n$ and $j \neq 2^n + i$