Good Afternoon, Colleagues

Are there any questions?
Logistics

- Programming assignment 4 - any questions?
Logistics

- Programming assignment 4 - any questions?
- A couple more talks:
 - Illah Nourbakhsh: personal rovers
 - Rosaline Picard: emotional intelligence
Logistics

• Programming assignment 4 - any questions?

• A couple more talks:
 – Illah Nourbakhsh: personal rovers
 – Rosaline Picard: emotional intelligence

• Schedule change
Class discussion

Mohamed Fakhreddine on the issues related to a particular multiagent system.
Some Definitions

- Distributed Computing:
Some Definitions

- **Distributed Computing**: Processors share data, but not control. Focus on low-level parallelization, synchronization.
Some Definitions

• **Distributed Computing**: Processors share data, but not control. Focus on low-level parallelization, synchronization.

• **Distributed AI**:
Some Definitions

- **Distributed Computing**: Processors share data, but not control. Focus on low-level parallelization, synchronization.

- **Distributed AI**: Control as well as data is distributed. Focus on problem solving, communication, and coordination.
Some Definitions

- **Distributed Computing**: Processors share data, but not control. Focus on low-level parallelization, synchronization.

- **Distributed AI**: Control as well as data is distributed. Focus on problem solving, communication, and coordination.

- **Distributed Problem Solving**:
Some Definitions

- **Distributed Computing**: Processors share data, but not control. Focus on low-level parallelization, synchronization.

- **Distributed AI**: Control as well as data is distributed. Focus on problem solving, communication, and coordination.

- **Distributed Problem Solving**: Task decomposition and/or solution synthesis.
Some Definitions

- **Distributed Computing**: Processors share data, but not control. Focus on low-level parallelization, synchronization.

- **Distributed AI**: Control as well as data is distributed. Focus on problem solving, communication, and coordination.

- **Distributed Problem Solving**: Task decomposition and/or solution synthesis.

- **Multiagent Systems**:

Peter Stone
Some Definitions

- **Distributed Computing**: Processors share data, but not control. Focus on low-level parallelization, synchronization.

- **Distributed AI**: Control as well as data is distributed. Focus on problem solving, communication, and coordination.

- **Distributed Problem Solving**: Task decomposition and/or solution synthesis.

- **Multiagent Systems**: Behavior coordination or behavior management.
Some Definitions

- **Distributed Computing**: Processors share data, but not control. Focus on low-level parallelization, synchronization.

- **Distributed AI**: Control as well as data is distributed. Focus on problem solving, communication, and coordination.

- **Distributed Problem Solving**: Task decomposition and/or solution synthesis.

- **Multiagent Systems**: Behavior coordination or behavior management.
 - No necessary guarantees about other agents.
 - Individual behaviors typically simple relative to interaction issues.
Multiagent Systems

- Study, behavior, construction of possibly preexisting autonomous agents that interact with each other.
 - incomplete information for agents
 - no global control
 - decentralized data
 - asynchronous computation
Why Multiagent Systems?
Why Multiagent Systems?

(7)

- Some domains require it. (Hospital scheduling)
- Interoperation of legacy systems
- Parallelism.
- Robustness.
- Scalability
- Simpler programming.
- “Intelligence is deeply and inevitably coupled with interaction.” – Gerhard Weiss
Issues and Challenges

• How to break down and resynthesize the problem among agents
Issues and Challenges

- How to break down and resynthesize the problem among agents

- Communication/interaction protocols
Issues and Challenges

- How to break down and resynthesize the problem among agents

- Communication/interaction protocols

- Maintain coherence, stability: guarantees?
 - Coherence is a global property
Issues and Challenges

• How to break down and resynthesize the problem among agents

• Communication/interaction protocols

• Maintain coherence, stability: guarantees?
 – Coherence is a global property

• Representation by agents of each other and interactions
Issues and Challenges

• How to break down and resynthesize the problem among agents

• Communication/interaction protocols

• Maintain coherence, stability: guarantees?
 – Coherence is a global property

• Representation by agents of each other and interactions

• Reconciling different points of view
Issues and Challenges

• How to break down and resynthesize the problem among agents

• Communication/interaction protocols

• Maintain coherence, stability: guarantees?
 – Coherence is a global property

• Representation by agents of each other and interactions

• Reconciling different points of view

• Engineering
Dimensions and issues

- cooperative vs. competitive
- communication
- trust
- recursive modeling
- coalitions
- game theory
Dimensions and issues

- cooperative vs. competitive
- communication
- trust
- recursive modeling
- coalitions
- game theory

Convoy example