Week 8b: Thursday, March 11th
Good Afternoon, Colleagues

Are there any questions?
Good Afternoon, Colleagues

Are there any questions?

• Belief/Desire/Intention-accessible?
Good Afternoon, Colleagues

Are there any questions?

- Belief/Desire/Intention-accessible?
- Accessibility relation?
Logistics

• Give yourself some time for the game theory readings
Proposals

• Overall, very good!
Proposals

• Overall, very good!

• I’m going to skip the writing tutorial (for now)
Proposals

• Overall, very good!

• I’m going to skip the writing tutorial (for now)

• A few common problems:
Proposals

• Overall, very good!

• I’m going to skip the writing tutorial (for now)

• A few common problems:
 – Too much proposed
Proposals

- Overall, very good!
- I’m going to skip the writing tutorial (for now)
- A few common problems:
 - Too much proposed
 - Lots of “what” but very little “how.”
Proposals

• Overall, very good!

• I’m going to skip the writing tutorial (for now)

• A few common problems:
 – Too much proposed
 – Lots of “what” but very little “how.”
 – Not enough to convince me that it will work

Peter Stone
Proposals

- Overall, very good!

- I’m going to skip the writing tutorial (for now)

- A few common problems:
 - Too much proposed
 - Lots of “what” but very little “how.”
 - Not enough to convince me that it will work
 - No evaluation plan
Proposals

- Overall, very good!
- I’m going to skip the writing tutorial (for now)
- A few common problems:
 - Too much proposed
 - Lots of “what” but very little “how.”
 - Not enough to convince me that it will work
 - No evaluation plan
- Will be stricter on progress reports
Proposals

- Overall, very good!

- I’m going to skip the writing tutorial (for now)

- A few common problems:
 - Too much proposed
 - Lots of “what” but very little “how.”
 - Not enough to convince me that it will work
 - No evaluation plan

- Will be stricter on progress reports
 - May reflect side forrays
Proposals

• Overall, very good!

• I’m going to skip the writing tutorial (for now)

• A few common problems:
 – Too much proposed
 – Lots of “what” but very little “how.”
 – Not enough to convince me that it will work
 – No evaluation plan

• Will be stricter on progress reports
 – May reflect side forrays
 – Be more realistic
Proposals

• Overall, very good!

• I’m going to skip the writing tutorial (for now)

• A few common problems:
 – Too much proposed
 – Lots of “what” but very little “how.”
 – Not enough to convince me that it will work
 – No evaluation plan

• Will be stricter on progress reports
 – May reflect side forrays
 – Be more realistic
– Be much more specific
Surveys

- Exam times not known
Surveys

- Exam times not known

- Discussions:
 - Longer/shorter discussions
 - Call on people more
Surveys

• Exam times not known

• Discussions:
 – Longer/shorter discussions
 – Call on people more
 – Less discussion, more lecture
 – I should be more critical
Surveys

- Exam times not known

- Discussions:
 - Longer/shorter discussions
 - Call on people more
 - Less discussion, more lecture
 - I should be more critical

- Readings:
 - More/less technical readings
 - Like/Don’t like free responses
 - Readings too hard in parts (or boring)
 - More recent readings
Surveys

- Exam times not known

- Discussions:
 - Longer/shorter discussions
 - Call on people more
 - Less discussion, more lecture
 - I should be more critical

- Readings:
 - More/less technical readings
 - Like/Don’t like free responses
 - Readings too hard in parts (or boring)
 - More recent readings
Syllabus:

- More theory
- More time per topic
- No clear direction (non-linear flow of topics)
● Syllabus:
 – More theory
 – More time per topic
 – No clear direction (non-linear flow of topics)

● Webpage:
 – more resources on the web pages
 – Assignments webpage to this week
● Syllabus:
 – More theory
 – More time per topic
 – No clear direction (non-linear flow of topics)

● Webpage:
 – more resources on the web pages
 – Assignments webpage to this week

● Classes fly by
Class Discussion

Chris Clark on BDI
Electric Elves: Human Org. Support

- Proxy agents for meeting scheduling
- Activities within an individual research project
- Meeting planning with participants outside the organization
Challenges

- Adjustable autonomy
- Reliable information access
- Capability matching
- Agent coordination
- Scaling up to continual, reliable usability
Technologies

• Adjustable autonomy motivated by CAP
Technologies

- Adjustable autonomy motivated by CAP
- MDPs to choose to delay risky decisions
Technologies

- Adjustable autonomy motivated by CAP
- MDPs to choose to delay risky decisions
- Capability characterization language
- Adaptive wrappers for info sources
- Data mining from publication records
Technologies

- Adjustable autonomy motivated by CAP
- MDPs to choose to delay risky decisions
- Capability characterization language
- Adaptive wrappers for info sources
- Data mining from publication records
- STEAM to coordinate agents
Technologies

- Adjustable autonomy motivated by CAP
- MDPs to choose to delay risky decisions
- Capability characterization language
- Adaptive wrappers for info sources
- Data mining from publication records
- STEAM to coordinate agents

Used continuously for several months
Question

- Are we ready for free flight and automatic proxy agents?
Past years’ applications

- OASIS
- Archon — an early MAS
- Trafficopter — highway traffic planning
- AntNet — network routing using ant metaphor
 - Competitive results
- Elevator control — using RL
Archon — Cockburn and Jennings ’96

- Large, industrialized systems (e.g. electricity distribution)

- A general system (methodology)
 - many applications

- Clearly distinguish between:
 - social know-how (AL)
 - domain-level problem solving (IS)

- Built to combine legacy systems
Trafficopter — Moukas et al. ’98

- Intelligent highways without the infrastructure
- Oncoming cars report upstream traffic
- Cars equipped with PDAs, GPS, wireless transceivers
 - Cheap equipment
 - Cars easily equipped
 - Not needed on all cars
Data Transfer

- Cars query about specific map locations
- Messages propagated by other cars
- Some controls to keep data fresh:
 - Half-time decay function of traffic data
 - Requests die after number of hops, amount of time
 - Farther messages propagates first (hop minimizer)
 - Only 3 propagations per message
Results

- Feasability studies in simulation
- Studied percentage of queries answered as a function of number of cars equipped
- Also studied effect of data cache and hop minimizer
AntNet

- Network routing example
- Randomized algorithm (packets sent probabilistically)
- Travel to destination and back, leaving time-to-dest data at nodes
- Follow the “pheromones” probabilistically
RL for elevator control

- Modeling elevator traffic during lunch

- Huge state space
 - Which call buttons are pressed
 - Which car buttons are pressed
 - Times since buttons pressed

- Small action space
 - Move up/down (when at a floor)
 - Stop/continue (when moving)
 - Some action constraints
Function approximation

- Neural network to approximate Q

- 47 inputs: ("after considerable experimentation")
 - call buttons (18)
 - car location (16)
 - other car locations (10)
 - domain info: at highest-needed floor or longest-waiting passenger (2)
 - bias unit (1)
Two architectures

• Parallel: all elevators share the same network (homogeneous)

• Decentralized: each elevator has its own network (heterogeneous)

Results

• Both outperform many other standard algorithms

• Why not use it?
Continue ML crash course

- Genetic algorithms/programming
- Neural networks
- Reinforcement learning