CS395T
Agent-Based Electronic Commerce
Fall 2003

Peter Stone

Department or Computer Sciences
The University of Texas at Austin

Week 3b, 9/11/03
Logistics

• Submitting responses to readings
 – Prefer non-just-summary ones
 – Show me you’ve thought about the readings
 – If it helps to summarize in addition, that’s fine
Logistics

• Submitting responses to readings
 – Prefer non-just-summary ones
 – Show me you’ve thought about the readings
 – If it helps to summarize in addition, that’s fine

• Presentation dates: announced soon
Logistics

- Submitting responses to readings
 - Prefer non-just-summary ones
 - Show me you’ve thought about the readings
 - If it helps to summarize in addition, that’s fine

- Presentation dates: announced soon

- Any questions?
Mechanism Design

• The rules of the game (what strategies are possible)
Mechanism Design

- The rules of the game (what strategies are possible)
- Defines a mapping from strategy to outcome
Mechanism Design

- The rules of the game (what strategies are possible)
- Defines a mapping from strategy to outcome

- Terms:
 - Efficient
 - (Weak) Budget balanced
 - Individual rationality

- “An ideal mechanism provides agents with a dominant strategy and also implements a solution to the multiagent distributed optimization problem” (p. 29, last paragraph of the section)
Relation to game theory

<table>
<thead>
<tr>
<th></th>
<th>Player 1</th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action 1</td>
<td>4,8</td>
<td>2,0</td>
</tr>
<tr>
<td>Action 2</td>
<td>6,2</td>
<td>0,8</td>
</tr>
</tbody>
</table>

- What’s the mechanism in this game?
Relation to game theory

<table>
<thead>
<tr>
<th>Player 1</th>
<th>Action 1</th>
<th>Action 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action 1</td>
<td>4,8</td>
<td>2,0</td>
</tr>
<tr>
<td>Action 2</td>
<td>6,2</td>
<td>0,8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Player 2</th>
<th>Action 1</th>
<th>Action 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Action 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- What’s the mechanism in this game?
- What’s an alternative mechanism?
Bayes Nash Equilibrium

- Allows for uncertainty about opponent type
Bayes Nash Equilibrium

- Allows for uncertainty about opponent type
- Consider 1st price auction for my pen
Bayes Nash Equilibrium

• Allows for uncertainty about opponent type

• Consider 1st price auction for my pen
 – Define a Nash equilibrium (what do you need to know)?
Bayes Nash Equilibrium

• Allows for uncertainty about opponent type

• Consider 1st price auction for my pen
 – Define a Nash equilibrium (what do you need to know)?
 – Define a Bayes-Nash equilibrium (what do you need to know)?
Bayes Nash Equilibrium

• Allows for uncertainty about opponent type

• Consider 1st price auction for my pen
 – Define a Nash equilibrium (what do you need to know)?
 – Define a Bayes-Nash equilibrium (what do you need to know)?
 – Is there a dominant strategy equilibrium?
Bayes Nash Equilibrium

- Allows for uncertainty about opponent type

- Consider 1st price auction for my pen
 - Define a Nash equilibrium (what do you need to know)?
 - Define a Bayes-Nash equilibrium (what do you need to know)?
 - Is there a dominant strategy equilibrium?
 - What if I tell you, I’ll take what you tell me as your value and compute for you the correct thing to do given what other people bid?
Ex ante vs. ex post

- Mechanism: each of you give me $1, one gets $100 back
Ex ante vs. ex post

- Mechanism: each of you give me $1, one gets $100 back
- Individually rational?
Ex ante vs. ex post

- Mechanism: each of you give me $1, one gets $100 back
- Individually rational?
 - Ex ante, yes
 - Ex post, no
Vickrey-Clarke-Groves

- Groves: efficient, strategy-proof
- Pivotal: individually-rational

<table>
<thead>
<tr>
<th></th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>camera alone</td>
<td>$50</td>
</tr>
<tr>
<td>flash alone</td>
<td>10</td>
</tr>
<tr>
<td>both</td>
<td>100</td>
</tr>
<tr>
<td>tripod</td>
<td>20</td>
</tr>
</tbody>
</table>
Vickrey-Clarke-Groves

- Groves: efficient, strategy-proof
- Pivotal: individually-rational

<table>
<thead>
<tr>
<th></th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>camera alone</td>
<td>$50</td>
</tr>
<tr>
<td>flash alone</td>
<td>10</td>
</tr>
<tr>
<td>both</td>
<td>100</td>
</tr>
<tr>
<td>tripod</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>camera</td>
<td>$60</td>
</tr>
<tr>
<td>flash</td>
<td>20</td>
</tr>
<tr>
<td>tripod</td>
<td>30</td>
</tr>
</tbody>
</table>
questions

- Assume quasi-linear values, etc.
- What is the allocation?
questions

- Assume quasi-linear values, etc.
- What is the allocation?
- What are the payments?
questions

- Assume quasi-linear values, etc.
- What is the allocation?
- What are the payments?
- Why is it strategy proof?
questions

• Assume quasi-linear values, etc.

• What is the allocation?

• What are the payments?

• Why is it strategy proof?

• What are choice set monotonic, negative externality, single-agent effects?
Computational considerations

• Why is this mechanism a burden on the bidders?
Impossibility/possibility results

- e.g. strategy-proof, efficient, individually rational, and (strong) budget-balanced impossible