CS395T
Agent-Based Electronic Commerce
Fall 2003

Peter Stone

Department or Computer Sciences
The University of Texas at Austin

Week 4a, 9/16/03
Logistics

- Thursday’s readings:
 - Weber mainly for the idea
Logistics

• Thursday’s readings:
 – Weber mainly for the idea
 – PRSDR for the possible domain
Logistics

• Thursday’s readings:
 – Weber mainly for the idea
 – PRSDR for the possible domain

• I’m an author on the next two readings
Logistics

- Thursday’s readings:
 - Weber mainly for the idea
 - PRSDR for the possible domain
- I’m an author on the next two readings
- TAC readings
Logistics

• Thursday’s readings:
 – Weber mainly for the idea
 – PRSDR for the possible domain

• I’m an author on the next two readings

• TAC readings

• Some more of the schedule, including presentation
 – Look for your name
 – Contact me with problems
Logistics

- Thursday’s readings:
 - Weber mainly for the idea
 - PRSDR for the possible domain

- I’m an author on the next two readings

- TAC readings

- Some more of the schedule, including presentation
 - Look for your name
 - Contact me with problems
 - Still tentative, but I’ll ask your permission to switch
Logistics

- Thursday’s readings:
 - Weber mainly for the idea
 - PRSDR for the possible domain

- I’m an author on the next two readings

- TAC readings

- Some more of the schedule, including presentation
 - Look for your name
 - Contact me with problems
 - Still tentative, but I’ll ask your permission to switch

- Any questions?
Some terms

• Exposure
Some terms

- Exposure
- Free rider
Some terms

- Exposure
- Free rider
- Threshold problem
 - Favors bidders wanting aggregations
Some terms

- Exposure
- Free rider
- Threshold problem
 - Favors bidders wanting aggregations
- Demand reduction
Some terms

- Exposure
- Free rider
- Threshold problem
 - Favors bidders wanting aggregations
- Demand reduction
- Threats
Example

<table>
<thead>
<tr>
<th># Parking Spots won</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2</td>
</tr>
<tr>
<td>A 0 0 100</td>
</tr>
<tr>
<td>B 0 75 75</td>
</tr>
<tr>
<td>C 0 40 40</td>
</tr>
</tbody>
</table>

- Assume no combinatorial bids: illustrate exposure
Example

<table>
<thead>
<tr>
<th># Parking Spots won</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>75</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>75</td>
<td>40</td>
</tr>
</tbody>
</table>

- Assume no combinatorial bids: illustrate exposure
- I’m A and have bid 80 for 2 spots
- B has bid 55 for spot 1
- C has bid 15 for spot 2
Example

<table>
<thead>
<tr>
<th></th>
<th># Parking Spots won</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 1 2</td>
</tr>
<tr>
<td>A</td>
<td>0 0 100</td>
</tr>
<tr>
<td>B</td>
<td>0 75 75</td>
</tr>
<tr>
<td>C</td>
<td>0 40 40</td>
</tr>
</tbody>
</table>

- Assume no combinatorial bids: illustrate exposure
- I’m A and have bid 80 for 2 spots
- B has bid 55 for spot 1
- C has bid 15 for spot 2
- Who’s winning?
Example

<table>
<thead>
<tr>
<th># Parking Spots won</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>75</td>
<td>40</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>75</td>
<td>40</td>
</tr>
</tbody>
</table>

- Assume no combinatorial bids: illustrate exposure
- I’m A and have bid 80 for 2 spots
- B has bid 55 for spot 1
- C has bid 15 for spot 2
- Who’s winning?
- If auction ends, what is everyone’s utility?
Example

<table>
<thead>
<tr>
<th># Parking Spots won</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

- Assume no combinatorial bids: illustrate exposure
- I’m A and have bid 80 for 2 spots
- B has bid 55 for spot 1
- C has bid 15 for spot 2
- Who’s winning?
- If auction ends, what is everyone’s utility?
- What are B and C’s rational bids?
Example

<table>
<thead>
<tr>
<th># Parking Spots won</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

- Assume no combinatorial bids: illustrate exposure
- I’m A and have bid 80 for 2 spots
- B has bid 55 for spot 1
- C has bid 15 for spot 2
- Who’s winning?
- If auction ends, what is everyone’s utility?
- What are B and C’s rational bids?
- Illustrate mutually exclusive bids from different rounds
Demand Reduction

<table>
<thead>
<tr>
<th># Parking Spots won</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2</td>
</tr>
<tr>
<td>A 0 25 100</td>
</tr>
<tr>
<td>B 0 30 90</td>
</tr>
</tbody>
</table>

- Simultaneous ascending auctions, $5 increments for bids
- I’ll be A, you be B
- Always place the best bids, given that my bids are unchanged
Demand Reduction

<table>
<thead>
<tr>
<th># Parking Spots won</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2</td>
</tr>
<tr>
<td>A 0 25 100</td>
</tr>
<tr>
<td>B 0 30 90</td>
</tr>
</tbody>
</table>

- Simultaneous ascending auctions, $5 increments for bids
- I’ll be A, you be B
- Always place the best bids, given that my bids are unchanged
- What are our utilities?
Demand Reduction

<table>
<thead>
<tr>
<th># Parking Spots won</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2</td>
</tr>
<tr>
<td>A 0 25 100</td>
</tr>
<tr>
<td>B 0 30 90</td>
</tr>
</tbody>
</table>

- Simultaneous ascending auctions, $5 increments for bids
- I’ll be A, you be B
- Always place the best bids, given that my bids are unchanged
- What are our utilities?
- Now let’s try again.
Demand Reduction

<table>
<thead>
<tr>
<th># Parking Spots won</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2</td>
</tr>
<tr>
<td>A 0 25 100</td>
</tr>
<tr>
<td>B 0 30 90</td>
</tr>
</tbody>
</table>

- Simultaneous ascending auctions, $5 increments for bids
- I’ll be A, you be B
- Always place the best bids, given that my bids are unchanged
- What are our utilities?
- Now let’s try again.
- Demand reduction can be taken to an extreme.
Threats

- Bidder A winning license 37 for $1M.
- Bidders A and B competing for license 63.
- Simultaneously, bidder B bids:
 - licence 37: $1.1M.
 - licence 63: $13,000,037
Threats

• Bidder A winning license 37 for $1M.

• Bidders A and B competing for license 63.

• Simultaneously, bidder B bids:
 – licence 37: $1.1M.
 – licence 63: $13,000,037

What’s the threat?
Stopping Rules, Activity Rules

Goal: Fast auction; simultaneous closings; simple
Stopping Rules, Activity Rules

Goal: Fast auction; simultaneous closings; simple

- Close licenses separately, but slow down bidding on each one as final prices are approached.
Stopping Rules, Activity Rules

Goal: Fast auction; simultaneous closings; simple

- Close licenses separately, but slow down bidding on each one as final prices are approached.
- Close the core “big” licenses first and simultaneously, then the smaller ones separately.
Stopping Rules, Activity Rules

Goal: Fast auction; simultaneous closings; simple

- Close licenses separately, but slow down bidding on each one as final prices are approached.

- Close the core “big” licenses first and simultaneously, then the smaller ones separately.
 - efficiency on big licenses, speed after that.
Stopping Rules, Activity Rules

Goal: Fast auction; simultaneous closings; simple

• Close licenses separately, but slow down bidding on each one as final prices are approached.

• Close the core “big” licenses first and simultaneously, then the smaller ones separately.
 – efficiency on big licenses, speed after that.

• Simultaneous close, but require activity
 – Activity on a license: bid placed or previous high bid
 – Low activity lowers eligibility
 – Eligibility bounds what you can bid on
 – Activity requirements increase as time goes on
Example

- NY = 50 BUs; LA = 40 BUs; SF = 30 BUs; etc.
Example

- NY = 50 BUs; LA = 40 BUs; SF = 30 BUs; etc.
- Deposit enough to get eligibility to bid on 100 BUs
Example

- NY = 50 BUs; LA = 40 BUs; SF = 30 BUs; etc.
- Deposit enough to get eligibility to bid on 100 BUs
 - So can bid on any 2
 - Can switch around
Example

- NY = 50 BUs; LA = 40 BUs; SF = 30 BUs; etc.

- Deposit enough to get eligibility to bid on 100 BUs
 - So can bid on any 2
 - Can switch around

- If you need to maintain activity of 80% of eligibility:
 - Activity only on LA \Rightarrow eligibility = 50
Example

- NY = 50 BUs; LA = 40 BUs; SF = 30 BUs; etc.
- Deposit enough to get eligibility to bid on 100 BUs
 - So can bid on any 2
 - Can switch around
- If you need to maintain activity of 80% of eligibility:
 - Activity only on LA ⇒ eligibility = 50
 - Activity only on SF ⇒ can no longer bid on NY
Example

- NY = 50 BUs; LA = 40 BUs; SF = 30 BUs; etc.
- Deposit enough to get eligibility to bid on 100 BUs
 - So can bid on any 2
 - Can switch around
- If you need to maintain activity of 80% of eligibility:
 - Activity only on LA ⇒ eligibility = 50
 - Activity only on SF ⇒ can no longer bid on NY
- Prevents *wait and see* strategy
Limits of theory (Milgrom, p.151)

- Identify variables, but not relative magnitudes
 - Conflicting effects \Rightarrow can’t tell which will dominate
Limits of theory (Milgrom, p.151)

- Identify variables, but not relative magnitudes
 - Conflicting effects \Rightarrow can’t tell which will dominate

- Ignores transaction costs of implementing policies
Limits of theory (Milgrom, p.151)

- Identify variables, but not relative magnitudes
 - Conflicting effects \Rightarrow can’t tell which will dominate
- Ignores transaction costs of implementing policies
- May depend on unknown information
 - e.g. bidder valuations
Limits of theory (Milgrom, p.151)

- Identify variables, but not relative magnitudes
 - Conflicting effects ⇒ can’t tell which will dominate

- Ignores transaction costs of implementing policies

- May depend on unknown information
 - e.g. bidder valuations

- Doesn’t scale to complexity of spectrum auctions
Limits of theory (Milgrom, p.151)

- Identify variables, but not relative magnitudes
 - Conflicting effects ⇒ can’t tell which will dominate

- Ignores transaction costs of implementing policies

- May depend on unknown information
 - e.g. bidder valuations

- Doesn’t scale to complexity of spectrum auctions

Bidder can be counted on to seek ways to outfox the mechanism — Milgrom p. 150 (top)

Used laboratory experiments too
Failure modes

- Dutch auction (top of p.27)
- Low competition, declining opening bids
- What went wrong?
Failure modes

- Dutch auction (top of p.27)
- Low competition, declining opening bids
- What went wrong?
- Designated entities also didn’t work
Combinatorial bidding

- High complexity estimates
Combinatorial bidding

- High complexity estimates
- What’s so hard?
Combinatorial bidding

- High complexity estimates
- What’s so hard?
 - 492 licenses $\Rightarrow 10^{148}$ combinations.
Combinatorial bidding

- High complexity estimates
- What’s so hard?
 - 492 licenses ⇒ 10^{148} combinations.
- 700 MHz never happened
Human factors

• CEO allows fears to control strategy
Human factors

- CEO allows fears to control strategy
- Throwing good money after bad
 - German auction
 - Auction 35 (p.27,28)