Logistics

- Please try to ask more specific questions
Logistics

• Please try to ask more specific questions
 – Instead of “I’m unclear on x,” I prefer “I interpret x to mean y. Is that correct?”
Logistics

- Please try to ask more specific questions
 - Instead of “I’m unclear on x,” I prefer “I interpret x to mean y. Is that correct?”

- Some project details
Logistics

- Please try to ask more specific questions
 - Instead of “I’m unclear on x,” I prefer “I interpret x to mean y. Is that correct?”

- Some project details
 - Possibly group oriented
Logistics

● Please try to ask more specific questions
 – Instead of “I’m unclear on x,” I prefer “I interpret x to mean y. Is that correct?”

● Some project details
 – Possibly group oriented
 – Winning vs. good research
Logistics

- Please try to ask more specific questions
 - Instead of “I’m unclear on x,” I prefer “I interpret x to mean y. Is that correct?”

- Some project details
 - Possibly group oriented
 - Winning vs. good research
 (what grade would livingagents get?)
Logistics

- Please try to ask more specific questions
 - Instead of “I’m unclear on x,” I prefer “I interpret x to mean y. Is that correct?”

- Some project details
 - Possibly group oriented
 - Winning vs. good research
 (what grade would livingagents get?)
 - How many games will there be?
Logistics

- Please try to ask more specific questions
 - Instead of “I’m unclear on x,” I prefer “I interpret x to mean y. Is that correct?”

- Some project details
 - Possibly group oriented
 - Winning vs. good research
 (what grade would livingagents get?)
 - How many games will there be?

- Any questions?
Simultaneous Auction

Flights: Inflight days 1-4, Outflight days 2-5 (8)

- Unlimited supply; prices random walk; immediate clear; no resale
28 Simultaneous Auction

Flights: Inflight days 1-4, Outflight days 2-5 (8)
- Unlimited supply; prices random walk; immediate clear; no resale

Hotels: Tampa Towers/Shanties 1-4 (8)
- 16 rooms per auction; 16th-price ascending auction; quote is ask price; no resale
- Auctions can close early
28 Simultaneous Auction

Flights: Inflight days 1-4, Outflight days 2-5 (8)
- Unlimited supply; prices random walk; immediate clear; no resale

Hotels: Tampa Towers/Shanties 1-4 (8)
- 16 rooms per auction; 16th-price ascending auction; quote is ask price; no resale
- Auctions can close early

Entertainment: MU/AP/AW days 1-4 (12)
- Continuous double auction; initial endowments; quote is bid-ask spread; resale allowed
Client Preferences and Utility

note: “utility” and “value” transposed
Client Preferences and Utility

note: “utility” and “value” transposed

Preferences: randomly generated per client

– Ideal arrival, departure days
– Good Hotel Value
– Entertainment Values
Client Preferences and Utility

note: “utility” and “value” transposed

Preferences: randomly generated per client

- Ideal arrival, departure days
- Good Hotel Value
- Entertainment Values

Utility: 1000 (if valid) – travel penalty + hotel bonus + entertainment bonus
Client Preferences and Utility

note: “utility” and “value” transposed

Preferences: randomly generated per client

- Ideal arrival, departure days
- Good Hotel Value
- Entertainment Values

Utility: 1000 (if valid) – travel penalty + hotel bonus + entertainment bonus

Score: Sum of client utilities – expenditures
Score handicapping – Sec. 6.1

• Needed to compare small numbers of games
Score handicapping – Sec. 6.1

- Needed to compare small numbers of games
- Done by an impartial party (U. Michigan)
Score handicapping – Sec. 6.1

• Needed to compare small numbers of games
• Done by an impartial party (U. Michigan)
• Mapping from client profiles to score
Score handicapping – Sec. 6.1

- Needed to compare small numbers of games
- Done by an impartial party (U. Michigan)
- Mapping from client profiles to score
- Three measures found to be significant:
 1. total client preferred travel days
 2. total entertainment values
 3. ratio of “easy” days (1 and 4) to hard (2 and 3) in preferred trip intervals
Score handicapping – Sec. 6.1

- Needed to compare small numbers of games
- Done by an impartial party (U. Michigan)
- Mapping from client profiles to score
- Three measures found to be significant:
 1. total client preferred travel days
 2. total entertainment values
 3. ratio of “easy” days (1 and 4) to hard (2 and 3) in preferred trip intervals
- Regression analysis to compute factors for individual games
Allocation

Given holdings, prices, determine G^*: Optimal complete itinerary assignments
Allocation

Given holdings, prices, determine G^*: Optimal complete itinerary assignments

• Greedy solution?
Allocation

Given holdings, prices, determine G^*:
Optimal complete itinerary assignments

- Greedy solution?
- Mixed-integer LP with 3 constraints:
Allocation

Given holdings, prices, determine G^*:
Optimal complete itinerary assignments

- Greedy solution?

- Mixed-integer LP with 3 constraints:
 1. Purchase enough to meet demand
 2. Entertainment tickets must be used legally
 3. All variables integral
Allocation

Given holdings, prices, determine G^*:
Optimal complete itinerary assignments

- Greedy solution?
- Mixed-integer LP with 3 constraints:
 1. Purchase enough to meet demand
 2. Entertainment tickets must be used legally
 3. All variables integral
- Enforce 1 and 2 (admissible);
Allocation

Given holdings, prices, determine G^*:
Optimal complete itinerary assignments

- Greedy solution?

- Mixed-integer LP with 3 constraints:
 1. Purchase enough to meet demand
 2. Entertainment tickets must be used legally
 3. All variables integral

- Enforce 1 and 2 (admissible);
 “Branch and bound” over adjustments for 3
Allocation

Given holdings, prices, determine G^*:
Optimal complete itinerary assignments

- Greedy solution?

- Mixed-integer LP with 3 constraints:
 1. Purchase enough to meet demand
 2. Entertainment tickets must be used legally
 3. All variables integral

- Enforce 1 and 2 (admissible);
 “Branch and bound” over adjustments for 3

- Globally optimal solution; usually $< .01$ sec
Sampling

- Example on p. 215
Sampling

- Example on p. 215

- What happens if you use mean price instead of sampling?
Sampling

- Example on p. 215

- What happens if you use mean price instead of sampling?

- Mean price is $68.75
Sampling

- Example on p. 215

- What happens if you use mean price instead of sampling?

- Mean price is $68.75

- Bid in this case would be $31.25
Boosting

- Why predict increase in price, not actual price?
Boosting

• Why predict increase in price, not actual price?

• p.221: how do “redundant variations” help?
Boosting

- Why predict increase in price, not actual price?

- p.221: how do “redundant variations” help?

- Example: trying to learn which days are good for swimming from a list of days
Boosting

- Why predict increase in price, not actual price?
- p.221: how do “redundant variations” help?
- Example: trying to learn which days are good for swimming from a list of days
- Concept: > 80 degree, sunny \implies swim
Boosting

- Why predict increase in price, not actual price?

- p.221: how do “redundant variations” help?

- Example: trying to learn which days are good for swimming from a list of days

- Concept: > 80 degree, sunny \implies swim

- List sunny days, list > 80 days, list swimming days
Boosting

• Why predict increase in price, not actual price?

• p.221: how do “redundant variations” help?

• Example: trying to learn which days are good for swimming from a list of days

• Concept: > 80 degree, sunny \implies swim

• List sunny days, list > 80 days, list swimming days

• What redundant feature would help?
Flight costs and benefits

- Cost is how much prices are expected to rise
 - *flight-lookahead* parameter

- Benefit is how likely you are to change your mind as prices become clear.
 - Hotel A will be either $10 (40%) or $100 (60%)
Flight costs and benefits

- Cost is how much prices are expected to rise
 - *flight-lookahead* parameter

- Benefit is how likely you are to change your mind as prices become clear.
 - Hotel A will be either $10 (40%) or $100 (60%)
 - When $10, flight X is $250 better, else flight Y is $250 better
Flight costs and benefits

• Cost is how much prices are expected to rise
 – *flight-lookahead* parameter

• Benefit is how likely you are to change your mind as prices become clear.
 – Hotel A will be either $10 (40%) or $100 (60%)
 – When $10, flight X is $250 better, else flight Y is $250 better
 – If buy now, buy flight . . .
Flight costs and benefits

- Cost is how much prices are expected to rise
 - *flight-lookahead* parameter

- Benefit is how likely you are to change your mind as prices become clear.
 - Hotel A will be either $10 (40%) or $100 (60%)
 - When $10, flight X is $250 better, else flight Y is $250 better
 - If buy now, buy flight . . . Y
Flight costs and benefits

• Cost is how much prices are expected to rise
 – *flight-lookahead* parameter

• Benefit is how likely you are to change your mind as prices become clear.
 – Hotel A will be either $10 (40%) or $100 (60%)
 – When $10, flight X is $250 better, else flight Y is $250 better
 – If buy now, buy flight . . . Y
 – Benefit of postponing?
Flight costs and benefits

- Cost is how much prices are expected to rise
 - *flight-lookahead* parameter

- Benefit is how likely you are to change your mind as prices become clear.
 - Hotel A will be either $10 (40%) or $100 (60%)
 - When $10, flight X is $250 better, else flight Y is $250 better
 - If buy now, buy flight . . . Y
 - Benefit of postponing?
 - 40% * $250 = $100