Good Afternoon Colleagues
Good Afternoon Colleagues

• Are there any questions?
Logistics
Logistics

- Nice responses!
Logistics

- Nice responses!
 - Length and content good
Logistics

- Nice responses!
 - Length and content good
 - Be clear and specific
Logistics

- Nice responses!
 - Length and content good
 - Be clear and specific
 - Look for programming assignment opportunities
Logistics

- Nice responses!
 - Length and content good
 - Be clear and specific
 - Look for programming assignment opportunities

- Some of you got replies
Logistics

- Nice responses!
 - Length and content good
 - Be clear and specific
 - Look for programming assignment opportunities

- Some of you got replies

- Today: self-introductions
Logistics

• Nice responses!
 – Length and content good
 – Be clear and specific
 – Look for programming assignment opportunities

• Some of you got replies

• Today: self-introductions

• Thursday: Discussion leader assignments
Some Questions

- What’s a model?
Some Questions

• What’s a model?

• Reward function vs. value function
Some Questions

• What’s a model?

• Reward function vs. value function
 – Tic-tac-toe example
Some Questions

- What’s a model?
- Reward function vs. value function
 - Tic-tac-toe example
 - Phil making breakfast example
Some Questions

- What's a model?

- Reward function vs. value function
 - Tic-tac-toe example
 - Phil making breakfast example

- Distinction with evolutionary methods?
 - Tic-tac-toe example
Some Questions

- What’s a model?

- Reward function vs. value function
 - Tic-tac-toe example
 - Phil making breakfast example

- Distinction with evolutionary methods?
 - Tic-tac-toe example
 - Phil making breakfast example
Reduced Formalism

Knowns:
- \(S = \{ \text{Blue, Red, Green, Black, \ldots} \} \)
- Rewards in \(\mathbb{R} \)
- \(A = \{ \text{Wave, Clap, Stand} \} \)

Unknowns:
- \(\mathcal{R} : S \times A \mapsto \mathbb{R} \)
- \(\mathcal{T} : S \times A \mapsto S \)

\[
\begin{align*}
 r_i &= \mathcal{R}(s_i, a_i) \\
 s_{i+1} &= \mathcal{T}(s_i, a_i)
\end{align*}
\]