CS395T
Reinforcement Learning:
Theory and Practice
Fall 2004

Peter Stone

Department or Computer Sciences
The University of Texas at Austin

Week3a: Tuesday, September 14th
Good Afternoon Colleagues
Good Afternoon Colleagues

● Are there any questions?
Logistics

- No class on Thursday
Logistics

- No class on Thursday

- Use that as an opportunity to do a programming assignment!
This Chapter

- Defines the problem
This Chapter

- Defines the problem
- Introduces some important notation and concepts.
This Chapter

- Defines the problem
- Introduces some important notation and concepts.
 - Returns
 - Markov property
 - State/action value functions
 - Bellman equations
This Chapter

- Defines the problem
- Introduces some important notation and concepts.
 - Returns
 - Markov property
 - State/action value functions
 - Bellman equations
 - Get comfortable with them!
This Chapter

• Defines the problem

• Introduces some important notation and concepts.
 – Returns
 – Markov property
 – State/action value functions
 – Bellman equations
 – Get comfortable with them!

• Solution methods come next
This Chapter

- Defines the problem
- Introduces some important notation and concepts.
 - Returns
 - Markov property
 - State/action value functions
 - Bellman equations
 - Get comfortable with them!
- Solution methods come next
 - What does it mean to solve an RL problem?
Formulating the RL problem

- Art more than science
Formulating the RL problem

- Art more than science
- States, actions, rewards
Formulating the RL problem

• Art more than science

• States, actions, rewards

• Rewards: no hints on how to solve the problem
Formulating the RL problem

- Art more than science
- States, actions, rewards
- Rewards: no hints on how to solve the problem
- Discounted vs. non-discounted
Formulating the RL problem

- Art more than science
- States, actions, rewards
- Rewards: no hints on **how** to solve the problem
- Discounted vs. non-discounted
- Episodic vs. continuing
Formulating the RL problem

- Art more than science
- States, actions, rewards
- Rewards: no hints on how to solve the problem
- Discounted vs. non-discounted
- Episodic vs. continuing
- Exercises 3.4, 3.5 (p.59)
Markov property

• What is it?
Markov property

- What is it?
- Does it hold in the real world?
Markov property

• What is it?
• Does it hold in the real world?
• It’s an ideal
 – Will allow us to prove properties of algorithms
 – Algorithms may still work when not provably correct
Markov property

- What is it?
- Does it hold in the real world?
- It’s an ideal
 - Will allow us to prove properties of algorithms
 - Algorithms may still work when not provably correct
- Exercise 3.6
Value functions

- Consider the week 0 environment
Value functions

- Consider the week 0 environment
- For some s, what is $V(s)$?
Value functions

- Consider the week 0 environment
- For some s, what is $V(s)$?
- OK - consider the policy we ended with
- Now, for some s, what is $V(s)$?
Value functions

- Consider the week 0 environment
- For some s, what is $V(s)$?
- OK - consider the policy we ended with
- Now, for some s, what is $V(s)$?
- Construct V in undiscounted, episodic case
Value functions

- Consider the week 0 environment
- For some \(s \), what is \(V(s) \)?
- OK - consider the policy we ended with
- Now, for some \(s \), what is \(V(s) \)?
- Construct \(V \) in undiscounted, episodic case
- Construct \(Q \) in undiscounted, episodic case
Value functions

- Consider the week 0 environment
- For some \(s \), what is \(V(s) \)?
- OK - consider the policy we ended with
- Now, for some \(s \), what is \(V(s) \) ?
- Construct \(V \) in undiscounted, episodic case
- Construct \(Q \) in undiscounted, episodic case
- What if it’s discounted?
Value functions

- Consider the week 0 environment
- For some s, what is $V(s)$?
- OK - consider the policy we ended with
- Now, for some s, what is $V(s)$?
- Construct V in undiscounted, episodic case
- Construct Q in undiscounted, episodic case
- What if it’s discounted?
- What if it’s continuing?
Value functions

- Consider the week 0 environment
- For some \(s \), what is \(V(s) \)?
- OK - consider the policy we ended with
- Now, for some \(s \), what is \(V(s) \)?
- Construct \(V \) in undiscounted, episodic case
- Construct \(Q \) in undiscounted, episodic case
- What if it’s discounted?
- What if it’s continuing?
• Exercises 3.10, 3.11, 3.17