Good Afternoon Colleagues

- Are there any questions?
Good Afternoon Colleagues

- Are there any questions?

- Pending questions:
 - How can actor learn continuous actions?
 - Can knowing actions help the critic?
Good Afternoon Colleagues

- Are there any questions?

- Pending questions:
 - How can actor learn continuous actions?
 - Can knowing actions help the critic?
 - Windy grid - why not MC?
 * Can’t we guarantee convergence? (147)
Good Afternoon Colleagues

- Are there any questions?

- Pending questions:
 - How can actor learn continuous actions?
 - Can knowing actions help the critic?
 - Windy grid - why not MC?
 - Can’t we guarantee convergence? (147)
 - Afterstates vs. state values?
Logistics

- Fill out survey by 12:30pm tomorrow
Logistics

- Fill out survey by 12:30pm tomorrow
- Chapter 7 important and a bit tricky
Random walks

- Exercises 6.2, 6.4 (book slides)
SARSA vs. Q

- Week 0 example
 - (Remember no access to real model)
 - $\alpha = .1$, ϵ-greedy $\epsilon = .75$, break ties in favor of →
SARSA vs. Q

• Week 0 example
 – (Remember no access to real model)
 – $\alpha = .1$, ϵ-greedy $\epsilon = .75$, break ties in favor of \rightarrow
 – Where did policy change?
SARSA vs. Q

- Week 0 example
 - (Remember no access to real model)
 - $\alpha = .1$, ϵ-greedy $\epsilon = .75$, break ties in favor of →
 - Where did policy change?

- How do their convergence guarantees differ?
SARSA vs. Q

- Week 0 example
 - (Remember no access to real model)
 - $\alpha = .1$, ϵ-greedy $\epsilon = .75$, break ties in favor of \rightarrow
 - Where did policy change?

- How do their convergence guarantees differ?
 - Sarsa depends on policy’ dependence on Q: Policy must converge to greedy
SARSA vs. Q

- Week 0 example
 - (Remember no access to real model)
 - $\alpha = .1$, ϵ-greedy $\epsilon = .75$, break ties in favor of ϵ →
 - Where did policy change?

- How do their convergence guarantees differ?
 - Sarsa depends on policy’ dependence on Q: Q-learning value function converges to Q^*
 - Policy must converge to greedy
 - As long as all state-action pairs visited infinitely
 - And step-size satisfies (2.8)
Actor-Critic

- Mazda’s discussion
Actor-Critic

- Mazda’s discussion
- How can actor learn continuous actions?
- Can knowing actions help the critic?
R-learning

- Average reward, continuing task
- Ergodic: non-zero probability of reaching any state
R-learning

- Average reward, continuing task
- Ergodic: non-zero probability of reaching any state
- Consider 2-state example
R-learning

• Average reward, continuing task

• Ergodic: non-zero probability of reaching any state

• Consider 2-state example

• Can be Off-policy
R-learning

- Average reward, continuing task
- Ergodic: non-zero probability of reaching any state
- Consider 2-state example
- Can be Off-policy
- R-learning sum converges?
R-learning

• Average reward, continuing task
• Ergodic: non-zero probability of reaching any state
• Consider 2-state example
• Can be Off-policy
• R-learning sum converges?
• R-learning: why negative in 6.17?
R-learning

• Average reward, continuing task

• Ergodic: non-zero probability of reaching any state

• Consider 2-state example

• Can be Off-policy

• R-learning sum converges?

• R-learning: why negative in 6.17?

• R-learning better than Q? Converges to optimal? (David)
R-learning

- Average reward, continuing task
- Ergodic: non-zero probability of reaching any state
- Consider 2-state example
- Can be Off-policy
- R-learning sum converges?
- R-learning: why negative in 6.17?
- R-learning better than Q? Converges to optimal? (David)
- (Afterstates)