Implementing Triangular Solve

Due March 10, 2011

The purpose of this exercise is to implement the lower and upper triangular solves that can be used to solve \(Ax = b \) when \(A \) has been factored into an LU factorization: \(A = LU \) where \(L \) is lower triangular and \(U \) is upper triangular.

1 Lower triangular solve

Write a routine, SLAP_Ltrsv_n_unb_var1,

\[
\text{function } \text{[bout]} = \text{SLAP}_n\text{Ltrsv}_n\text{unb}_\text{var1}(\text{diag}, L, b)
\]

That assumes that \(L \) is stored in the lower triangular part of array \(L \) and overwrites \(b \) with the solution of \(Lx = b \), returning the result in \(\text{bout} \) (meaning that when you use the Spark tool, you will want to make \(b \) input/output.

The parameter \(\text{diag} \) can take on the values SLAP_NON_UNIT_DIAG or SLAP_UNIT_DIAG. In the case of the former, the elements on the diagonal of \(L \) are simply those stored in the array \(L \). In the case of the latter, the elemental on the diagonal of \(L \) are not stored, but are assumed to be one (as happens when you overwrite matrix \(A \) with its LU factorization).

Optionally, also implement a second variant. One would access \(L \) by rows, the other by columns.

2 Upper triangular solve

Write a routine, SLAP_n_Utrsv_unb_var1,

\[
\text{function } \text{[bout]} = \text{SLAP}_n\text{Utrsv}_n\text{unb}_\text{var1}(\text{diag}, U, b)
\]

That assumes that \(U \) is stored in the upper triangular part of array \(U \) and overwrites \(b \) with the solution of \(Ux = b \), returning the result in \(\text{bout} \) (meaning that when you use the Spark tool, you will want to make \(b \) input/output.

The parameter \(\text{diag} \) can take on the values SLAP_NON_UNIT_DIAG or SLAP_UNIT_DIAG. In the case of the former, the elements on the diagonal of \(U \) are simply those stored in the array \(U \). In the case of the latter, the elemental on the diagonal of \(U \) are not stored, but are assumed to be one (as happens when you overwrite matrix \(A \) with its LU factorization).

Optionally, also implement a second variant. One would access \(U \) by rows, the other by columns.

Warning: To solve \(Ux = b \) you have to run backwards through the matrix!

3 Wrapper routine

Write a routine, SLA_Trsv,

\[
\text{function } \text{[bout]} = \text{SLA}_\text{Trsv}(\text{uplo}, \text{trans}, \text{diag}, A, b)
\]

As before, \(b \) can be either a row or a column vector. Depending on parameter \(\text{uplo} \) you call SLAP_Ltrsv_n_unb_var1 or SLAP_Utrsv_n_unb_var1. You may ignore the \(\text{trans} \) parameter. But if you are ambitious, you will make everything work (You now notice that the \(_n \) in the function names stand for *no transpose* so that one can also write routines for the transpose case.)