CS311: Discrete Math for Computer Science, Spring 2015

Homework Assignment 4, with Solutions

1. Find coefficients \(a, b, c, d\) such that formula (5) from Part 3 of Lecture Notes is satisfied for all values of \(n\).

 Solution: By substituting 0, 1, 2 and 3 for \(n\) in the formula

 \[S_n = an^3 + bn^2 + cn + d,\]

 we get the equations

 \[
 \begin{align*}
 0 &= d, \\
 1 &= a + b + c + d, \\
 5 &= 8a + 4b + 2c + d, \\
 14 &= 27a + 9b + 3c + d.
 \end{align*}
 \]

 From these equations we find: \(a = \frac{1}{3}, b = \frac{1}{2}, c = \frac{1}{6}, d = 0\).

2. (a) Find a formula for

 \[
 \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{n \cdot (n+1)}
 \]

 by examining the values of this expression for small values of \(n\).

 Answer: \(\frac{n}{n+1}\).

 (b) Prove the formula you conjectured in part (a).

 Solution: we will prove the formula

 \[
 \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{n \cdot (n+1)} = \frac{n}{n+1}
 \]

 by induction. Basis: When \(n = 0\), the formula turns into 0 = \(\frac{0}{1}\). Induction step: assuming that the given formula holds for \(n\), we can prove that

 \[
 \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{n \cdot (n+1)} + \frac{1}{(n+1) \cdot (n+2)} = \frac{n+1}{n+2}
 \]

 as follows:

 \[
 \begin{align*}
 \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{n \cdot (n+1)} + \frac{1}{(n+1) \cdot (n+2)} &= \frac{n}{n+1} + \frac{1}{(n+1) \cdot (n+2)} \\
 &= \frac{n \cdot (n+2) + 1}{(n+1) \cdot (n+2)} = \frac{n^2 + 2n + 1}{(n+1) \cdot (n+2)} = \frac{(n+1)^2}{(n+1) \cdot (n+2)} = \frac{n + 1}{n + 2}.
 \end{align*}
 \]
3. (a) Find a formula for
\[1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n! \]
by examining the values of this expression for small values of \(n \).

Answer: \((n + 1)! - 1\).

(b) Prove the formula you conjectured in part (a).

Solution: we will prove the formula
\[1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n! = (n + 1)! - 1 \]
by induction. Basis: When \(n = 0 \), the formula turns into \(0 = 1! - 1 \). Induction step: assuming that the given formula holds for \(n \), we can prove that
\[1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n! + (n + 1) \cdot (n + 1)! = (n + 2)! - 1 \]
as follows:
\[
1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n! + (n + 1) \cdot (n + 1)! = (n + 1)! - 1 + (n + 1) \cdot (n + 1)!
= (n + 1)!(n + 1 + 1) - 1
= (n + 2)! - 1.
\]

4. Prove that for every nonnegative integer \(n \)
\[\sum_{i=1}^{n} i2^i = (n - 1)2^{n+1} + 2. \]

Solution: we will prove the formula by induction. Basis: When \(n = 0 \), the formula turns into \(0 = (-1) \cdot 2 + 2 \). Induction step: assuming that the given formula holds for \(n \), we can prove that
\[\sum_{i=1}^{n+1} i2^i = n2^{n+2} + 2 \]
as follows:
\[
\sum_{i=1}^{n+1} i2^i = \sum_{i=1}^{n} i2^i + (n + 1)2^{n+1} = (n - 1)2^{n+1} + 2 + (n + 1)2^{n+1} = 2n \cdot 2^{n+1} + 2 = n2^{n+2} + 2.
\]