1. Without a calculator, determine which of the numbers
\[10^{30}, 10^{50}, 10^{70} \]
gives the best approximation to the value of the fraction \(\frac{100!}{(50!)^2} \). Justify your answer.

2. Prove that
 (i) \(n^2 + n + 1 = O(n^2) \),
 (ii) \(3 \cdot 2^n + 100 = O(2^n) \),
 (iii) \(e^n + e^{n+1} = O(e^n) \).

3. Let \(A \) be the set \(\{\{1\}, \{2\}, \{3\}\} \).
 (i) How many elements does \(A \) have?
 (ii) Does \(A \) have a pair of different elements \(x, y \) such that \(x \subseteq y \)?
 (iii) How many subsets does \(A \) have?
 (iv) Does \(A \) have a pair of different subsets \(x, y \) such that \(x \subseteq y \)?
 Justify your answers.