Part 7. Sets, Relations and Functions

Sets

A set is a collection of objects. We write $x \in A$ if object x is an element of set A, and $x \notin A$ otherwise.

The set whose elements are x_1, \ldots, x_n is denoted by $\{x_1, \ldots, x_n\}$. The set $\{\}$ is called empty and denoted also by \emptyset. The set of nonnegative integers is denoted by \mathbb{N}:

$$\mathbb{N} = \{0, 1, 2, \ldots\}.$$

Other examples are the set \mathbb{Z} of all integers and the set \mathbb{R} of real numbers.

When we specify which objects belong to a set, this defines the set completely; there is no such thing as the order of elements in a set or the number of repetitions of an element in a set. For instance,

$$\{2, 3\} = \{3, 2\} = \{2, 2, 3\}.$$

If C is a condition, then by $\{x \mid C\}$ we denote the set of all objects x satisfying this condition. For instance,

$$\{x \mid x = 2 \lor x = 3\}$$

is the same set as $\{2, 3\}$.

If A is a set and C is a condition, then by $\{x \mid x \in A ; C\}$ we denote the set of all elements of A satisfying condition C. For instance, $\{2, 3\}$ can be also written as

$$\{x \in \mathbb{N} \mid 1 < x < 4\}.$$

If a set A is finite then the number of elements of A is also called the cardinality of A and denoted by $|A|$. For instance,

$$|\emptyset| = 0, \quad |\{2, 3\}| = 2.$$

We say that a set A is a subset of a set B, and write $A \subseteq B$, if every element of A is an element of B. For instance,

$$\emptyset \subseteq \mathbb{N}, \quad \{2,3\} \subseteq \mathbb{N}.$$
Operations on Sets

For any sets A and B, by $A \cup B$ we denote the set
\[
\{ x : x \in A \lor x \in B \},
\]
called the union of A and B. By $A \cap B$ we denote the set
\[
\{ x : x \in A \land x \in B \},
\]
called the intersection of A and B. For instance,
\[
\{2, 3\} \cup \{3, 5\} = \{2, 3, 5\},
\]
\[
\{2, 3\} \cap \{3, 5\} = \{3\}.
\]

By $A \setminus B$ we denote the set
\[
\{ x : x \in A \land x \notin B \},
\]
called the difference of A and B. For instance,
\[
\{2, 3\} \setminus \{3, 5\} = \{2\}.
\]

The Cartesian product of sets A and B is the set of ordered pairs $\langle x, y \rangle$ such that $x \in A$ and $y \in B$:
\[
A \times B = \{ \langle x, y \rangle : x \in A \land y \in B \}.
\]
For instance,
\[
\{1, 2\} \times \{2, 3, 4, 5, 6\} = \{\langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 1, 4 \rangle, \langle 1, 5 \rangle, \langle 1, 6 \rangle, \langle 2, 2 \rangle, \langle 2, 3 \rangle, \langle 2, 4 \rangle, \langle 2, 5 \rangle, \langle 2, 6 \rangle\}.
\]

By $\mathcal{P}(A)$ we denote the power set of a set A, that is, the set of all subsets of A:
\[
\mathcal{P}(A) = \{ B : B \subseteq A \}.
\]
For instance,
\[
\mathcal{P}(\{2, 3\}) = \{\emptyset, \{2\}, \{3\}, \{2, 3\}\}.
\]

Binary Relations

Any condition on a pair of elements of a set A defines a binary relation, or simply relation, on A. For instance, the condition $x < y$ defines a relation on the set \mathbb{N} of nonnegative integers (or on any other set of numbers). If R is a relation, the formula xRy expresses that R holds for the pair x, y.

A relation R can be characterized by the set of all ordered pairs $\langle x, y \rangle$ such that xRy. It is customary to talk about a relation as it were the same thing as the corresponding set of ordered pairs. For instance, we can say that the relation $<$ on the set $\{1, 2, 3, 4\}$ is the set
\[
\{ \langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 1, 4 \rangle, \langle 2, 3 \rangle, \langle 2, 4 \rangle, \langle 3, 4 \rangle \}.
\]
A relation R on a set A is said to be reflexive if, for all elements x of A, xRx. We say that R is irreflexive if there is no element x of A such that xRx. For instance, the relations $=$ and \leq on the set \mathbb{N} (or on any set of numbers) are reflexive, and the relations \neq and $<$ are irreflexive.

A relation R on a set A is said to be symmetric if, for all $x, y \in A$, xRy implies yRx. For instance, the relations $=$ and \neq on \mathbb{N} are symmetric, and the relations $<$ and \leq are not.

A relation R on a set A is said to be transitive if, for all $x, y, z \in A$, xRy and yRz imply xRz. For instance, the relations $=$, $<$ and \leq on the set \mathbb{N} are transitive, and the relation \neq is not.

Equivalence Relations and Partitions

An equivalence relation is a relation that is reflexive, symmetric, and transitive.

A partition of a set A is a collection P of non-empty subsets of A such that every element of A belongs to exactly one of these subsets. For instance, here are some partitions of \mathbb{N}:

- $P_1 = \{\{0, 2, 4, \ldots\}, \{1, 3, 5, \ldots\}\}$,
- $P_2 = \{\{0, 1\}, \{2, 3\}, \{4, 5\}, \ldots\}$,
- $P_3 = \{\{0\}, \{1\}, \{2\}, \{3\}, \ldots\}$.

If P is a partition of a set A then the relation “x and y belong to the same element of P” is an equivalence relation.

Order Relations

A relation R on a set A is said to be antisymmetric if, for all $x, y \in A$, xRy and yRx imply $x = y$. For instance, the relation \leq on \mathbb{R} is antisymmetric.

A partial order is a relation that is reflexive, anti-symmetric, and transitive. For instance, the relation \leq on \mathbb{R}, the relation $|$ on \mathbb{N}, and the relation \subseteq on $\mathcal{P}(A)$ for any set A are partial orders.

A total order on a set A is a partial order such that for all $x, y \in A$, xRy or yRx. For instance, \leq is total and $|$ is not.

General Definition of a Function

For any sets A and B, a function from A to B is a rule f that can be applied to any element x of A and produces an element $f(x)$ of B. The set A is called the domain of f. The subset of B consisting of the values $f(x)$ of the function for all $x \in A$ is called the range of f. If the range of f is the whole set B then we say that f is a function onto B.

This definition of a function is general because it does not assume that the domain and the range consist of numbers. In the following examples, the domain of each function is the set S of all bit strings:

$$S = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, \ldots\}.$$
1. Function \(l \) from \(S \) to \(N \): \(l(x) \) is the length of \(x \). For instance,
 \(l(00110) = 5 \).

2. Function \(z \) from \(S \) to \(N \): \(z(x) \) is the number zeroes in \(x \). For instance,
 \(z(00110) = 3 \).

3. Function \(n \) from \(S \) to \(N \): \(n(x) \) is the number represented by \(x \) in binary notation.
 For instance, \(n(00110) = 6 \).

4. Function \(e \) from \(S \) to \(S \): \(e(x) \) is the string 1\(x \). For instance,
 \(e(00110) = 100110 \).

5. Function \(r \) from \(S \) to \(S \): \(r(x) \) is the string \(x \) reversed. For instance,
 \(r(00110) = 01100 \).

6. Function \(p \) from \(S \) to \(P(S) \): \(p(x) \) is the set of prefixes of \(x \). For instance,
 \(p(00110) = \{ \epsilon, 0, 00, 001, 0011, 00110 \} \).

A function \(f \) can be characterized by the set of all ordered pairs of the form \((x, f(x)) \).
It is customary to talk about a function as if it were the same thing as the corresponding
set of ordered pairs. For instance, we can say that the function \(f \) from \(N \) to \(N \) defined
by the formula \(f(n) = 2n + 1 \) is the set
 \(\{(0, 1), (1, 3), (2, 5), \ldots \} \).

Instead of defining functions as rules, we can say that a function from a set \(A \) to a set \(B \)
is a set \(f \subseteq A \times B \) such that for every element \(x \) of \(A \) there exists a unique element \(y \)
of \(B \) for which \((x, y) \in f \).

A function \(f \) from \(A \) to \(B \) is called one-to-one if, for any pair of different elements
\(x, y \) of \(A \), \(f(x) \) is different from \(f(y) \). If a function \(f \) is both onto and one-to-one then
we say that \(f \) is a bijection. A permutation of a set \(A \) is a bijection from \(A \) to \(A \).

If \(f \) is a function from \(A \) to \(B \), and \(g \) is a function from \(B \) to \(C \), then the composition
of these functions is the function \(h \) from \(A \) to \(C \) defined by the formula \(h(x) = g(f(x)) \).
This function is denoted by \(g \circ f \).

If \(f \) is a bijection from \(A \) to \(B \) then the inverse of \(f \) is the function \(g \) from \(B \) to \(A \)
such that, for every \(x \in A \), \(g(f(x)) = x \). This function is denoted by \(f^{-1} \).