Topics of this Slideset

- Numeric Encodings: Unsigned and two’s complement
- Programming Implications: C promotion rules
- Basic operations:
 - addition, negation, multiplication
 - Consequences of overflow
 - Using shifts to perform power-of-2 multiply/divide
Assume a machine with 32-bit word size, two’s complement integers.

For each of the following C expressions, either:

- Argue that is true for all argument values;
- Give an example where it’s not true.

```c
int x = foo();
int y = bar();
unsigned ux = x;
unsigned uy = y;
```

- `x < 0 → ((x*2) < 0`
- `ux >= 0`
- `x & 7 == 7 → (x<<30) < 0`
- `ux > -1`
- `x > y → -x < -y`
- `x * x >= 0`
- `x > 0 && y > 0 → x + y > 0`
- `x >= 0 → -y <= 0`
- `x <= 0 → -x >= 0`
Assume we have a \(w \) length bit string \(X \).

Unsigned: \(B2U(X) = \sum_{i=0}^{w-1} X_i \times 2^i \)

Two’s complement: \(B2T(X) = -X_{w-1} \times 2^{w-1} + \sum_{i=0}^{w-1} X_i \times 2^i \)

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>

Sign Bit:
For 2’s complement, the most significant bit indicates the sign.
- 0 for nonnegative
- 1 for negative
\[x = 15213: \quad 00111011 \quad 01101101 \]
\[y = -15213: \quad 11000100 \quad 10010011 \]

<table>
<thead>
<tr>
<th>Weight</th>
<th>15213</th>
<th>-15213</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>64</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>128</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>256</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>512</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1024</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2048</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4096</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8192</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16384</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>-32768</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Sum

<table>
<thead>
<tr>
<th>15213</th>
<th>-15213</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Numeric Ranges

Unsigned Values

UMin = 0
UMax = 2^w – 1

Two’s Complement Values

TMin = –2^{w−1}
TMax = 2^{w−1} – 1

Values for w = 16

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>65535</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>Tmax</td>
<td>32767</td>
<td>7F FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>Tmin</td>
<td>-32768</td>
<td>FF FF</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Values for Different Word Sizes

<table>
<thead>
<tr>
<th>w</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>255</td>
<td>65,525</td>
<td>4,294,967,295</td>
<td>18,446,744,073,709,551,615</td>
</tr>
<tr>
<td>Tmax</td>
<td>127</td>
<td>32,767</td>
<td>2,147,483,647</td>
<td>9,223,372,036,854,775,807</td>
</tr>
<tr>
<td>Tmin</td>
<td>-128</td>
<td>-32,768</td>
<td>-2,147,483,648</td>
<td>-9,223,372,036,854,775,808</td>
</tr>
</tbody>
</table>

Observations

- \(|T_{\text{Min}}| = T_{\text{Max}} + 1\)
- \(U_{\text{Max}} = 2 \times T_{\text{Max}} + 1\)

C Programming

```c
#include <limits.h>
```

Declares various constants: `ULONG_MAX`, `LONG_MAX`, `LONG_MIN`, etc. The values are platform-specific.
Equivalence: Same encoding for nonnegative values

Uniqueness:
- Every bit pattern represents a unique integer value
- Each representable integer has unique encoding

Can Invert Mappings:
- inverse of $B2U(X)$ is $U2B(X)$
- inverse of $B2T(X)$ is $T2B(X)$
C allows conversions from signed to unsigned.

```
short int x = 15213;
unsigned short into ux = (unsigned short) x;
short int y = -15213;
unsigned short into uy = (unsigned short) y;
```

Resulting Values:

- No change in bit representation.
- Nonnegative values are unchanged.
- Negative values change into (large) positive values.
Signed vs Unsigned in C

Constants

- By default, constants are considered to be signed integers.
- They are unsigned if they have “U” as a suffix: 0U, 4294967259U.

Casting

- Explicit casting between signed and unsigned is the same as U2T and T2U:

  ```c
  int tx, ty;
  unsigned ux, uy;
  tx = (int) ux;
  uy = (unsigned) ty;
  ```

- Implicit casting also occurs via assignments and procedure calls.

  ```c
  tx = ux;
  uy = ty;
  ```
Expression Evaluation

- If you mix unsigned and signed in a single expression, signed values implicitly cast to unsigned.
- This includes when you compare using `<`, `>`, `==`, `<=`, `>=`.

<table>
<thead>
<tr>
<th>Const 1</th>
<th>Const 2</th>
<th>Rel.</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0U</td>
<td>==</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td><</td>
<td>signed</td>
</tr>
<tr>
<td>-1</td>
<td>0U</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>-2147483648</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>2147483647U</td>
<td>-2147483648</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>(unsigned) 1</td>
<td>-2</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>2147483648U</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>(int) 2147483648U</td>
<td>></td>
<td>signed</td>
</tr>
</tbody>
</table>
Sign Extension

Task: Given a w-bit signed integer x, convert it to a $w+k$-bit integer with the same value.

Rule: Make k copies of the sign bit:

$$x' = x_{w-1}, \ldots, x_{w-1}, x_{w-2}, \ldots, w_0$$

Why does this work?
Sign Extension Example

```c
short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;
```

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111101 01101101</td>
</tr>
<tr>
<td>ix</td>
<td>15213</td>
<td>00 00 3B 6D</td>
<td>00000000 00000000 00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>iy</td>
<td>-15213</td>
<td>FF FF C4 93</td>
<td>11111111 11111111 11000100 10010011</td>
</tr>
</tbody>
</table>

In converting from smaller to larger signed integer data types, C automatically performs sign extension.
Why Use Unsigned?

Don’t use just to ensure numbers are nonzero.

- Some C compilers generate less efficient code for unsigned.

```c
unsigned i;
for (i=1; i < cnt; i++)
    a[i] += a[i-1]
```

- It’s easy to make mistakes.

```c
for (i = cnt - 2; i >= 0; i--)
    a[i] += a[i+1]
```

Do use when performing modular arithmetic.

- multiprecision arithmetic
- other esoteric stuff

Do use when you need extra bits of range.
Negating Two’s Complement

To find the negative of a number in two’s complement form: complement the bit pattern and add 1:

\[
\sim x + 1 = -x
\]

Example:

\[
10011101 = 0\times9C = -98_{10}
\]
complement:
\[
01100010 = 0\times62 = 97_{10}
\]
add 1:
\[
01100011 = 0\times63 = 98_{10}
\]

Try it with: 11111111 and 00000000.
Complement and Increment Examples

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
</tr>
<tr>
<td>~x</td>
<td>-15214</td>
<td>C4 92</td>
</tr>
<tr>
<td>~x+1</td>
<td>-15213</td>
<td>C4 93</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
</tr>
<tr>
<td>~0</td>
<td>-1</td>
<td>FF FF</td>
</tr>
<tr>
<td>~0+1</td>
<td>0</td>
<td>00 00</td>
</tr>
</tbody>
</table>

- Decimal: x, ~x, ~x+1, 0, ~0, ~0+1
- Hex: 3B 6D, C4 92, C4 93
- Binary: 00111011 01101101, 11000100 10010010, 11000100 10010011, 00000000 00000000, 11111111 11111111, 00000000 00000000

CS429 Slideset 3: 16 Integers
Given two w-bit unsigned quantities u, v, the true sum may be a $w+1$-bit quantity.

We just discard the carry bit, and treat the result as an unsigned integer.

Thus, unsigned addition implements **modular addition**.

$$UAdd_w(u, v) = (u + v) \mod 2^w$$

$$UAdd_w(u, v) = \begin{cases}
 u + v & u + v < 2^w \\
 u + v - 2^w & u + v \geq 2^w
\end{cases}$$
Properties of Unsigned Addition

Unsigned addition forms an **Abelian Group**.

- Closed under addition:
 \[0 \leq \text{UAdd}_w(u, v) \leq 2^w - 1 \]

- Commutative
 \[\text{UAdd}_w(u, v) = \text{UAdd}_w(v, u) \]

- Associative
 \[\text{UAdd}_w(t, \text{UAdd}_w(u, v)) = \text{UAdd}_w(\text{UAdd}_w(t, u), v) \]

- 0 is the additive identity
 \[\text{UAdd}_w(u, 0) = u \]

- Every element has an additive inverse
 Let \(\text{UComp}_w(u) = 2^w - u \), then
 \[\text{UAdd}_w(u, \text{UComp}_w(u)) = 0 \]
Two’s Complement Addition

Given two w-bit unsigned quantities u, v, the true sum may be a $w+1$-bit quantity.

We just discard the carry bit, treat the result as a two’s complement number.

$$\text{TAdd}_w(u, v) = \begin{cases}
 u + v + 2^{w-1} & u + v < \text{TMin}_w \quad \text{(NegOver)} \\
 u + v & \text{TMin}_w < u + v \leq \text{TMax}_w \\
 u + v - 2^{w-1} & \text{TMax}_w < u + v \quad \text{PosOver}
\end{cases}$$
Two's Complement Addition

TAdd and UAdd have identical bit-level behavior.

```c
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v
```

This will give $s == t$.
Task: Determine if $s = TAdd_w(u, v) = u + v$.

Claim: We have overflow iff either:
- $u, v < 0$ but $s \geq 0$ (NegOver)
- $u, v \geq 0$ but $s < 0$ (PosOver)

Can compute this as:

$$ovf = (u<0 == v<0) \&\& (u<0 != s<0);$$
Properties of TAdd

Isomorphic Algebra to UAdd.
This is clear since they have identical bit patterns.

\[\text{Tadd}_w(u, v) = \text{U2T(UAdd}_w(\text{T2U}(u), \text{T2U}(v))) \]

Two’s Complement under TAdd forms a group.

- Closed, commutative, associative, 0 is additive identity.
- Every element has an additive inverse:

Let \(\text{TComp}_w(u) = \text{U2T(UComp}_w(\text{T2U}(u)), \text{T2U}(u))) \), then
\[\text{TAdd}_w(u, \text{UComp}_w(u)) = 0 \]

\[
\text{TComp}_w(u) = \begin{cases}
-u & u \neq \text{TMin}_w \\
\text{TMin}_w & u = \text{TMin}_w
\end{cases}
\]
Multiplication

Computing the exact product of two \(w\)-bit numbers \(x, y\). This is the same for both signed and unsigned.

Ranges:

- **Unsigned**: \(0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1\), requires up to \(2^w\) bits.
- **Two’s comp. min**:
 \(x \times y \geq (-2^{w-1}) \times (2^{w-1} - 1) = -2^{2w-2} + 2^{w-1}\), requires up to \(2w - 1\) bits.
- **Two’s comp. max**: \(x \times y \leq (-2^{w-1})^2 = 2^{2w-2}\), requires up to \(2^w\), but only for \(\text{TMin}_w\).

Maintaining the exact result

- Would need to keep expanding the word size with each product computed.
- Can be done in software with “arbitrary precision” arithmetic packages.
Given two \(w \)-bit unsigned quantities \(u, v \), the true sum may be a \(2w \)-bit quantity.

We just discard the most significant \(w \) bits, treat the result as an unsigned number.

Thus, unsigned multiplication implements **modular multiplication**.

\[
UMult_w(u, v) = (u \times v) \mod 2^w
\]
Unsigned vs. Signed Multiplication

Unsigned Multiplication

```c
unsigned ux = (unsigned) x;
unsigned uy = (unsigned) y;
unsigned up = ux * uy;
```

- Truncates product to w-bit number: \(up = \text{UMult}_w(ux, uy) \)
- Modular arithmetic: \(up = ux \cdot uy \mod 2^w \)

Two’s Complement Multiplication

```c
int x, y;
int p = x * y;
```

- Compute exact product of two w-bit numbers \(x, y \).
- Truncate result to w-bit number: \(p = \text{TMult}_w(x, y) \)
Unsigned vs. Signed Multiplication

Unsigned Multiplication

```c
unsigned ux = (unsigned) x;
unsigned uy = (unsigned) y;
unsigned up = ux * uy;
```

Two’s Complement Multiplication

```c
int x, y;
int p = x * y;
```

Relation

- Signed multiplication gives same bit-level result as unsigned.
- `up == (unsigned) p`
A left shift by k, is equivalent to multiplying by 2^k. This is true for both signed and unsigned values.

\[
\begin{align*}
u \ll 1 & \rightarrow u \times 2 \\
u \ll 2 & \rightarrow u \times 4 \\
u \ll 3 & \rightarrow u \times 8 \\
u \ll 4 & \rightarrow u \times 16 \\
u \ll 5 & \rightarrow u \times 32 \\
u \ll 6 & \rightarrow u \times 64 \\
\end{align*}
\]

Compilers often use shifting for multiplication, since shift and add is much faster than multiply.

\[u \ll 5 - u \ll 3 = u \times 24\]
A right shift by k, is (approximately) equivalent to dividing by 2^k, but the effects are different for the unsigned and signed cases. **Quotient of unsigned value by power of 2.**

$$u \gg k = \lfloor x/2^k \rfloor$$

Uses logical shift.

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>15213</td>
<td>15213</td>
<td>3B 6D 00111011 01101101</td>
</tr>
<tr>
<td>$y \gg 1$</td>
<td>7606.5</td>
<td>7606</td>
<td>1D B6 00011101 10110110</td>
</tr>
<tr>
<td>$y \gg 4$</td>
<td>950.8125</td>
<td>950</td>
<td>03 B6 00000011 10110110</td>
</tr>
<tr>
<td>$y \gg 8$</td>
<td>59.4257813</td>
<td>59</td>
<td>00 3B 00000000 00111011</td>
</tr>
</tbody>
</table>
Signed Divide by Shift

Quotient of unsigned value by power of 2.

\[u \gg k = \lfloor x/2^k \rfloor \]

- Uses arithmetic shift. What does that mean?
- Rounds in wrong direction when \(u < 0 \).

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>-15213</td>
<td>-15213</td>
<td>C4 93 11000100 10010011</td>
</tr>
<tr>
<td>(y \gg 1)</td>
<td>-7606.5</td>
<td>-7607</td>
<td>E2 49 11100010 01001001</td>
</tr>
<tr>
<td>(y \gg 4)</td>
<td>-950.8125</td>
<td>-951</td>
<td>FC 49 11111100 01001001</td>
</tr>
<tr>
<td>(y \gg 8)</td>
<td>-59.4257813</td>
<td>-60</td>
<td>FF C4 11111111 11000100</td>
</tr>
</tbody>
</table>
We’ve seen that right shifting a negative number, give the wrong answer, because it rounds away from 0.

\[u \gg k = \lfloor x/2^k \rfloor \]

We’d really like \([x/2^k]\) instead.

You can compute this as: \([(x + 2^k - 1)/2^k]\). In C, that’s:

\[
(x + (1<<k) - 1) >> k
\]

This biases the dividend toward 0.
Unsigned multiplication with additions forms a **Commutative Ring**.

- Addition is commutative
- Closed under multiplication
 \[0 \leq \text{UMult}_w(u, v) \leq 2^w - 1 \]
- Multiplication is commutative
 \[\text{UMult}_w(u, v) = \text{UMult}_w(v, u) \]
- Multiplication is associative
 \[\text{UMult}_w(t, \text{UMult}_w(u, v)) = \text{UMult}_w(\text{UMult}_w(t, u), v) \]
- 1 is the multiplicative identity
 \[\text{UMult}_w(u, 1) = u \]
- Multiplication distributes over addition
 \[\text{UMult}_w(t, \text{UAdd}_w(u, v)) = \text{UAdd}_w(\text{UMult}_w(t, u), \text{UMult}_w(t, v)) \]
Properties of Two’s Complement Arithmetic

Isomorphic Algebras

- Unsigned multiplication and addition: truncate to \(w \) bits
- Two’s complement multiplication and addition: truncate to \(w \) bits

Both form rings isomorphic to ring of integers mod \(2^w \)

Comparison to Integer Arithmetic

- Both are rings
- Integers obey ordering properties, e.g.
 \[
 u > 0 \implies u + v > 0 \\
 u > 0, v > 0 \implies u \cdot v > 0
 \]
- These properties are not obeyed by two’s complement arithmetic.
 \[
 T_{\text{Max}} + 1 == T_{\text{Min}} \\
 15213 \times 30426 == -10030 \text{ (for 16-bit words)}
 \]
Assume a machine with 32-bit word size, two's complement integers.

```c
int x = foo();
int y = bar();
unsigned ux = x;
unsigned uy = y;
```

<table>
<thead>
<tr>
<th>Condition</th>
<th>Equivalent</th>
<th>Truth Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>x < 0</code></td>
<td><code>((x*2) < 0)</code></td>
<td>False: Tmin</td>
</tr>
<tr>
<td><code>ux >= 0</code></td>
<td>True: 0 = UMin</td>
<td></td>
</tr>
<tr>
<td><code>x & 7 == 7</code></td>
<td><code>(x<<30) < 0</code></td>
<td>True: $x_1 = 1$</td>
</tr>
<tr>
<td><code>ux > -1</code></td>
<td>False: 0</td>
<td></td>
</tr>
<tr>
<td><code>x > y</code></td>
<td><code>-x < -y</code></td>
<td>False: -1, Tmin</td>
</tr>
<tr>
<td><code>x * x >= 0</code></td>
<td>False: 30426</td>
<td></td>
</tr>
<tr>
<td><code>x > 0 && y > 0</code></td>
<td><code>x + y > 0</code></td>
<td>False: Tmax, Tmax</td>
</tr>
<tr>
<td><code>x >= 0</code></td>
<td><code>-y <= 0</code></td>
<td>True: -TMax < 0</td>
</tr>
<tr>
<td><code>x <= 0</code></td>
<td><code>-x >= 0</code></td>
<td>False: Tmin</td>
</tr>
</tbody>
</table>