CS 378 – Big Data Programming

Lecture 20

Filtering Patterns
Review

• Assignment 8 – User Session
 – Replicated join, multiple outputs

• Questions/issues:
 – DistributedCache issues in AWS
Filtering Patterns

• For filtering, we’re not changing the data
• We interested in finding subsets of the data
 – Examine the data in detail
 – “Search”

• Sampling a common use of filtering
 – Create a representative subset for analysis

• Subset based on some relevance criteria
Filtering Patterns

• Basic Filtering
 – Examine each input record and decide whether it “stays”

• Apply a selection predicate to each input record
 – Return true if the record is to be kept (in the subset)

• MapReduce allows the filter to be applied in parallel

• Map-only
Basic Filtering - Data Flow

Figure 3-1 from MapReduce Design Patterns

Diagram showing the basic filtering data flow with input splits, filters, and output splits.
Basic Filtering

• Map-only pattern

• Can we combine this with other patterns?
 – Other map-only patterns?
 – Patterns with reduce logic?

• Would we want to use `MultipleOutputs`?

• What sorts of filtering might we apply to sessions?
Basic Filtering

• Some common basic filtering uses

 • grep

 • Random sample

 • Score records on some criterion, apply a threshold

 • Data cleansing
Basic Filtering

• Since this is a map-only pattern, the number of output files will match the number of mappers.
• If the filtering is strong, these files will be small.

• What would we do to generate fewer, larger files?
 • Use fewer mappers, but that would take longer.
 • Use identity mapper to consolidate output.
Distributed grep

• grep – Unix filtering utility

• Apply a regular expression to each input record
• Output records that match
Distributed grep

```java
public static class GrepMapper
    extends Mapper<Object, Text, NullWritable, Text> {

    private String mapRegex = null;

    public void setup(Context context) throws IOException,
                        InterruptedException {

        mapRegex = context.getConfiguration().get("mapregex");
    }

    public void map(Object key, Text value, Context context)
                    throws IOException, InterruptedException {

        if (value.toString().matches(mapRegex)) {
            context.write(NullWritable.get(), value);
        }
    }

```
Simple Random Sampling

• Each input record has equal probability of selection

• Does the selection predicate need to examine the record?
 – If we want the equal probability condition, then no.
 – If we want a biased sample, we can consider the record

• Like basic filtering, consider output file size
Simple Random Sampling

```java
private Random rands = new Random();
private Double percentage;

protected void setup(Context context) throws IOException, InterruptedException {
    // Retrieve the percentage that is passed in via the configuration
    // like this: conf.set("filter_percentage", .5);
    // for .5%
    String strPercentage = context.getConfiguration()
        .get("filter_percentage");
    percentage = Double.parseDouble(strPercentage) / 100.0;
}

public void map(Object key, Text value, Context context)
    throws IOException, InterruptedException {
    if (rands.nextDouble() < percentage) {
        context.write(NullWritable.get(), value);
    }
}
```
Bloom Filter

• Bloom filter like the basic filter
• But selection predicate is:
 – Does record contain a value from a predefined set?

• This set may be too large to fit in memory

• Bloom filter is fixed size, but has false positives
Bloom Filter – Data Flow

Figure 3-2 from MapReduce Design Patterns
Bloom Filter

• Bloom filter commonly used as map-only
 – Output files will have some false positives
 – Code examples in the book (pp. 53 – 57)

• We discussed how to combine Bloom filter with reduce-side join
 – Bloom filter represented user IDs with leads
 – Applied in the mapper
 – Reduced the data sent to reduce
 – Reduce eliminated false positives (non-lead sessions)
Bloom Filter - Review

• Probabilistic data structure
 – Used to test whether something is in a predefined set
 – Can create “false positives”
 • Knows for sure that something is not a member of the set
 • Sometimes reports membership as true, when it is false
 – Never creates “false negatives”
 • Never reports “not a member” when it in fact it is a member

• Fixed size in memory
 – Train the filter using members of the set
Bloom Filter - Review

• Can add members to the set (further training)
 – Can’t remove members
 – There is a technique that allows removal

• Parameters of the filter
 – Number of bits in a bit array
 – Number of independent has functions

• These can be tuned to get a certain false positive rate
Top Ten (or Top N)

• We know that we want a specific number of outputs
 – Based on some evaluation/ranking criterion

• An obvious approach is to sort first

• But total sort is expensive for large data
 – In Hadoop, or in a database

• Output should be significantly smaller than the input

• How might we accomplish this without sort?
Top Ten (or Top N)

• Start with a comparison method
 – Given two records, which one is larger

• Each mapper finds the top ten from its data

• Each mapper sends it top ten to reduce

• Reduce finds the final top ten
 – How many reducers?
Top Ten (or Top N)

class mapper:
 setup():
 initialize top ten sorted list

 map(key, record):
 insert record into top ten sorted list
 if length of array is greater-than 10 then
 truncate list to a length of 10

 cleanup():
 for record in top sorted ten list:
 emit null, record
class reducer:
 setup():
 initialize top ten sorted list
 reduce(key, records):
 sort records
 truncate records to top 10
 for record in records:
 emit record
Top Ten (or Top N)
Top Ten (or Top N)

• Remember to copy records retained in $\text{map}(\cdot)$
 – Why?

• What are the key/value output by the mappers?

• For top N, if N large, this pattern becomes inefficient
 – Single reducer
 – Data transferred to reduce
 – Reduce input is sorted (expensive for large data)
 – No parallel writes from reduce
Distinct

• Want only one record when duplicate records exist

• Map:
 – Extract the data of interest (if not the entire record)
 – Output this data as the key
 – Make the value output by map() NullWritable

• Reduce:
 – Simply write out each unique key (the data of interest)
 – Can use a large number of reducers
Distinct

- Can we use a combiner?

- If duplicates are rare, combiner doesn’t help much
- If duplicates are common, or co-located, a combiner can greatly reduce the data transferred

- Suppose we want all the data in the record, and
 - The compare method is complex
 - Can we approach this problem differently?