CS 378 – Big Data Programming

Lecture 21
Filtering Patterns
Review

• Assignment 8 – User Session
  – Replicated join, multiple outputs

• Questions/issues:
  – DistributedCache
  – MultipleOutputs
Filtering Patterns

• Basic filtering
  – grep
  – Random sampling
    • Unbiased, biased

• Bloom filter
• Top N
• Distinct
Bloom Filter - Review

• Bloom filter like the basic filter
• But selection predicate is:
  – Does record contain a value from a predefined set?

• This set may be too large to fit in memory

• Bloom filter is fixed size, but has false positives
Bloom Filter – Data Flow

Figure 3-2 from MapReduce Design Patterns
Bloom Filter - Review

• Bloom filter commonly used as map-only
  – Output files will have some false positives
  – Code examples in the book (pp. 53 – 57)

• We discussed how to combine Bloom filter with reduce-side join
  – Bloom filter represented user IDs with leads
  – Applied in the mapper
  – Reduced the data sent to reduce
  – Reduce eliminated false positives (non-lead sessions)
Bloom Filter - Review

• Probabilistic data structure
  – Used to test whether something is in a predefined set
  – Can create “false positives”
    • Knows for sure that something is not a member of the set
    • Sometimes reports membership as true, when it is false
  – Never creates “false negatives”
    • Never reports “not a member” when it in fact it is a member

• Fixed size in memory
  – Train the filter using members of the set
Bloom Filter - Review

- Can add members to the set (further training)
  - Can’t remove members
  - There is a technique that allows removal

- Parameters of the filter
  - Number of bits in a bit array
  - Number of independent has functions

- These can be tuned to get a certain false positive rate
Top Ten (or Top N)

• We know that we want a specific number of outputs
  – Based on some evaluation/ranking criterion

• An obvious approach is to sort first
• But total sort is expensive for large data
  – In Hadoop, or in a database
• Output should be significantly smaller than the input

• How might we accomplish this without sort?
Top Ten (or Top N)

• Start with a comparison method
  – Given two records, which one is larger

• Each mapper finds the top ten from its data
• Each mapper sends it top ten to reduce
• Reduce finds the final top ten
  – How many reducers?
Top Ten (or Top N)

class mapper:
    setup():
        initialize top ten sorted list

    map(key, record):
        insert record into top ten sorted list
        if length of array is greater-than 10 then truncate list to a length of 10

    cleanup():
        for record in top sorted ten list:
            emit null,record
Top Ten (or Top N)

class reducer:
    setup():
        initialize top ten sorted list

    reduce(key, records):
        sort records
        truncate records to top 10
        for record in records:
            emit record
Top Ten (or Top N)
Top Ten (or Top N)

• Remember to copy records retained in `map()`
  – Why?

• What are the key/value output by the mappers?

• For top N, if N large, this pattern becomes inefficient
  – Single reducer
  – Data transferred to reduce
  – Reduce input is sorted (expensive for large data)
  – No parallel writes from reduce
Distinct

• Want only one record when duplicate records exist

• Map:
  – Extract the data of interest (if not the entire record)
  – Output this data as the key
  – Make the value output by map() NullWritable

• Reduce:
  – Simply write out each unique key (the data of interest)
  – Can use a large number of reducers
Distinct

• Can we use a combiner?

• If duplicates are rare, combiner doesn’t help much
• If duplicates are common, or co-located, a combiner can greatly reduce the data transferred

• Suppose we want all the data in the record, and
  – The compare method is complex
  – Can we approach this problem differently?
Assignment 9 - Filtering

• Start with Assignment 8 - remove DistributedCache

• For our four session categories
  – Keep all submitters
  – Searchers by: output only those with Carfax actions
  – Browsers: random sample at %
  – Bouncers: random sample at % / 10

• Pass in the % from the command line