CS 378 – Big Data Programming

Lecture 5
Summarization Patterns
Review

• Assignment 2 – Questions?

• If you’d like to use guava (Google collections classes)
 – pom.xml available for assignment 2
 – Includes dependency for guava
 – Creates an “uber” JAR for upload to AWS
Summarization

• Other summarizations of interest
 – Min, max, mean

• Suppose we are interested in these metrics for paragraph length (Assignment 2 data)
 – If paragraph lengths are normally distributed, then the median will be very near the mean
 – If the distribution of paragraph lengths is skewed, then the mean and median will be very different
Summarization

• Min and max are straightforward

• For each paragraph, output two values
 – Min length (the length of the current paragraph)
 – Max length (the length of the current paragraph)
 – Key?

• Combiner will get a list of value pairs
 – Select the min, max from the list, output the values
 – Key?

• Reducer does the same
Summarization

• Median
 – Get all the values, sort them, then find the middle

• Since our computation is distributed, no mapper sees all the values

• Should we send them all to one reducer?
 – Not utilizing map-reduce (computation not distributed)
 – Data sizes likely too large to keep in memory
Summarization

• Median
 – Keep the unique paragraph lengths, and
 – The frequency of each length

• Map output:
 – <paragraph length, 1>

• Combiner gets a list of these pairs and updates the count for recurring lengths
• Reducer does the same, then computes the median
Summarization

• Median
 – Hadoop provides the `SortedMapWritable` class
 – Can associate a frequency count with a paragraph length
 – Keeps the lengths in sorted order

• See the example in Chapter 2 of *Map-Reduce Design Patterns*

• How could we compute all in one pass over the data?
 – min, max, median
Counters

• Hadoop map-reduce infrastructure provides counters
 – Accessed by group name
 – Cannot have a large number of counters
 • For example, can’t use counters to solve WordCount
 – A few tens of counters can be used

• Counters are stored in memory on JobTracker
Counters
Figure 2-6, MapReduce Design Patterns
How Hadoop MapReduce Works

• We’ve seen some terms like:
 – Job
 – JobTracker
 – TaskTracker

• Let’s look at what they do

• Details from Chapter 6, *Hadoop: The Definitive Guide 3rd Edition*
How Hadoop MapReduce Works

Figure 6-1, Hadoop: The Definitive Guide 3rd Edition
Job Submission

• Job submission
 – Input files exist?
 – Output directory exist?
 • If yes, it fails. Hadoop expects to create this directory
 – Copy resources to HDFS
 • JAR files
 • Configuration file
 • Computed file splits
Job Tracker

• Creates tasks (work to be done)
 – Map task for each input split
 – Requested number of reducer tasks
 – Job setup, job cleanup tasks

• Map tasks are assigned to task trackers that are “close” to the input split location
 – Data local preferred
 – Rack local next

• Reduce task can go anywhere. Why?
• Scheduling algorithm orders the tasks
Task Tracker

• Configured for several map and reduce tasks

• Periodically sends a “heartbeat” to job tracker
 – “I’m still alive”
 – “Ready for new task”

• For a new task
 – Copy files to local file system (JAR, configuration)
 – Launch a new JVM (TaskRunner)
 – Load the mapper/reducer class and call its method
 – Update the task tracker progress
Task Progress

• Mapper
 – What portion of the input has been processed

• Reducer – more complicated
 – Sort, shuffle and reduce are considered here
 – Progress is an estimate of how much of the total work has been done
Shuffle

Figure 6-6, Hadoop: The Definitive Guide 3rd Edition
The number of reduce tasks is not governed by the size of the input, but instead is specified independently. In "The Default MapReduce Job" on page 227, you will see how to choose the number of reduce tasks for a given job.

When there are multiple reducers, the map tasks partition their output, each creating one partition for each reduce task. There can be many keys (and their associated values) in each partition, but the records for any given key are all in a single partition. The partitioning can be controlled by a user-defined partitioning function, but normally the default partitioner—which buckets keys using a hash function—works very well.

The data flow for the general case of multiple reduce tasks is illustrated in Figure 2-4. This diagram makes it clear why the data flow between map and reduce tasks is colloquially known as "the shuffle," as each reduce task is fed by many map tasks. The shuffle is more complicated than this diagram suggests, and tuning it can have a big impact on job execution time, as you will see in "Shuffle and Sort" on page 208.

Finally, it's also possible to have zero reduce tasks. This can be appropriate when you don't need the shuffle because the processing can be carried out entirely in parallel (a few examples are discussed in "NLineInputFormat" on page 247). In this case, the only off-node data transfer is when the map tasks write to HDFS (see Figure 2-5).

Combiner Functions

Many MapReduce jobs are limited by the bandwidth available on the cluster, so it pays to minimize the data transferred between map and reduce tasks. Hadoop allows the user to specify a combiner function to be run on the map output, and the combiner...