Design an algorithm for verifying the satisfiability of a formula α in CTL. That is given a model M with a marked state s, $M, s \models \alpha$? For simplicity you can assume M to be a tree and s its root. Further prove the correctness of this algorithm and estimate the time and space complexity of the algorithm.

(Hint) Assume that α uses only modalities from $O = \{\text{EU, EX, EG}\}$. This is valid because O is a minimal operator set. α is of the form $\oplus \alpha'$, where $\oplus \in O$ hence handle α recursively. Keep in mind α' can be a prepositional formula.

Further Section 3.6.1 of the textbook has the algorithm. You can use it. An actual implementation of the algorithm will get you more points. However I will still need the pseudocode.