Global Predicate Detection and Event Ordering

Our Problem
To compute predicates over the state of a distributed application

Model
- Message passing
- No failures
- Two possible timing assumptions:
 1. Synchronous System
 2. Asynchronous System
 - No upper bound on message delivery time
 - No bound on relative process speeds
 - No centralized clock

Asynchronous systems
- Weakest possible assumptions
 cfr. “finite progress axiom”
- Weak assumptions \(\equiv\) less vulnerabilities
- Asynchronous \(\neq\) slow
- “Interesting” model w.r.t. failures (ah ah ah!)
Client-Server

Processes exchange messages using Remote Procedure Call (RPC)
A client requests a service by sending the server a message. The client blocks while waiting for a response.

C → S

Client-Server

Processes exchange messages using Remote Procedure Call (RPC)
A client requests a service by sending the server a message. The client blocks while waiting for a response.

C → S

Deadlock!

Design a protocol by which a processor can determine whether a global predicate (say, deadlock) holds.

Goal

Design a protocol by which a processor can determine whether a global predicate (say, deadlock) holds.
Wait-For Graphs

- Draw arrow from p_i to p_j if p_j has received a request but has not responded yet

- Cycle in WFG \Rightarrow deadlock

- Deadlock \Rightarrow cycle in WFG

The protocol

- p_0 sends a message to $p_1 \ldots p_3$

- On receipt of p_0’s message, p_i replies with its state and wait-for info

An execution
An execution

Ghost Deadlock!

Houston, we have a problem...

- Asynchronous system
 - no centralized clock, etc. etc.
- Synchrony useful to
 - coordinate actions
 - order events
- Mmmmmhh...

Events and Histories

- Processes execute sequences of events
- Events can be of 3 types: local, send, and receive
 \(e_p^i \) is the \(i \)-th event of process \(p \)
- The local history \(h_p \) of process \(p \) is the sequence of events executed by process \(p \)
 \(h_p^k \) : prefix that contains first \(k \) events
 \(h_p^0 \) : initial, empty sequence
- The history \(H \) is the set \(h_{p_0} \cup h_{p_1} \cup \ldots h_{p_{n-1}} \)

NOTE: In \(H \), local histories are interpreted as sets, rather than sequences, of events
Ordering events

Observation 1: Events in a local history are totally ordered

Happened-before (Lamport[1978])

A binary relation defined over events

1. if \(e^k_i, e^l_i \in h_i \) and \(k < l \), then \(e^k_i \rightarrow e^l_i \)

2. if \(e_i = \text{send}(m) \) and \(e_j = \text{receive}(m) \), then \(e_i \rightarrow e_j \)

3. if \(e \rightarrow e' \) and \(e' \rightarrow e'' \) then \(e \rightarrow e'' \)

Space-Time diagrams

A graphic representation of a distributed execution
Space-Time diagrams

A graphic representation of a distributed execution

H and → impose a partial order
Space-Time diagrams

A graphic representation of a distributed execution

H and \rightarrow impose a partial order

Space-Time diagrams

A graphic representation of a distributed execution

H and \rightarrow impose a partial order

Space-Time diagrams

A graphic representation of a distributed execution

H and \rightarrow impose a partial order

Runs and Consistent Runs

A run is a total ordering of the events in H that is consistent with the local histories of the processors

\(\text{Ex: } h_1, h_2, \ldots, h_n \text{ is a run} \)

A run is \textbf{consistent} if the total order imposed in the run is an extension of the partial order induced by \(\rightarrow \)

A single distributed computation may correspond to several consistent runs!
A cut C is a subset of the global history of H

$$C = h_{c1}^1 \cup h_{c2}^2 \cup \ldots \cup h_{cn}^n$$

The frontier of C is the set of events

$$e_{c1}^1, e_{c2}^2, \ldots, e_{cn}^n$$

The global state of a distributed computation is an n-tuple of local states

$$\Sigma = (\sigma_1, \ldots, \sigma_n)$$

To each cut $(c_1 \ldots c_n)$ corresponds a global state $(\sigma_{c1}^1, \ldots, \sigma_{cn}^n)$

Consistent cuts and consistent global states

A cut is consistent if

$$\forall e_i, e_j : e_j \in C \land e_i \rightarrow e_j \Rightarrow e_i \in C$$

A consistent global state is one corresponding to a consistent cut
Our task

- Develop a protocol by which a processor can build a consistent global state
- Informally, we want to be able to take a snapshot of the computation
- Not obvious in an asynchronous system...

Our approach

- Develop a simple synchronous protocol
- Refine protocol as we relax assumptions
- Record:
 - processor states
 - channel states
- Assumptions:
 - FIFO channels
 - Each message m timestamped with $T(send(m))$
Snapshot I

1. p_0 selects t_{ss}
2. p_0 sends "take a snapshot at t_{ss}" to all processes
3. when clock of p_i reads t_{ss} then p
 a. records its local state σ_i
 b. starts recording messages received on each of incoming channels
 c. stops recording a channel when it receives first message with timestamp greater than or equal to t_{ss}

Correctness

Theorem: Snapshot I produces a consistent cut

Proof: Need to prove $e_j \in C \land e_i \rightarrow e_j \Rightarrow e_i \in C$

- $e_j \in C \equiv T(e_j) < t_{ss}$
- $0. e_j \in C \equiv T(e_j) < t_{ss}$
- $3. T(e_j) < t_{ss}$
- $6. T(e_i) < t_{ss}$
- $4. e_i \rightarrow e_j \Rightarrow T(e_i) < T(e_j)$
- $7. e_i \in C$
- σ_i
- $< 0 \text{ and } 1>$
- $< 5 \text{ and } 3>$
- $< \text{Property of real time}>$
- $< \text{Definition}>$
- $< 2 \text{ and } 4>$
- $< \text{Property of real time}>$
- $4. e_i \rightarrow e_j \Rightarrow T(e_i) < T(e_j)$

Clock Condition

Can the Clock Condition be implemented some other way?
Lamport Clocks

Each process maintains a local variable LC

$L C(e) \equiv \text{value of } L C \text{ for event } e$

$LC(e_i^p) < LC(e_{i+1}^p)$

$LC(e_q^p) < LC(e_q^q)$

Increment Rules

$LC(e_{p+1}^p) = LC(e_p^p) + 1$

$LC(e_{q+1}^q) = \max(LC(e_{q+1}^q), LC(e_{p+1}^p)) + 1$

Timestamp m with $TS(m) = LC(send(m))$

Space-Time Diagrams and Logical Clocks

A subtle problem

when $LC = t$ do S

doesn't make sense for Lamport clocks!

there is no guarantee that LC will ever be t

S is anyway executed after $LC = t$

Fixes:

- if e is internal/send and $LC = t - 2$
 - execute e and then S
- if $e = receive(m) \land (TS(m) \geq t) \land (LC \leq t - 1)$
 - put message back in channel
 - re-enable e; set $LC = t - 1$; execute S
An obvious problem

No \(t_{\text{ss}} \)!

Choose \(\Omega \) large enough that it cannot be reached by applying the update rules of logical clocks

\[
\text{mmmhhhh}...
\]

Doingso assumes

- upper bound on message delivery time
- upper bound relative process speeds

\[\text{We better relax it...} \]

Snapshot II

processor \(p_0 \) selects \(\Omega \)

\(p_0 \) sends “take a snapshot at \(\Omega \)” to all processes; it waits for all of them to reply and then sets its logical clock to \(\Omega \)

when clock of \(p_i \) reads \(\Omega \) then \(p_i \)

- records its local state \(\sigma_i \)
- sends an empty message along its outgoing channels
- starts recording messages received on each incoming channel
- stops recording a channel when receives first message with timestamp greater than or equal to \(\Omega \)
Snapshots: a perspective

The global state \(\Sigma^* \) saved by the snapshot protocol is a consistent global state.

But did it ever occur during the computation?

- a distributed computation provides only a partial order of events
- many total orders (runs) are compatible with that partial order
- all we know is that \(\Sigma^* \) could have occurred

Snapshots: a perspective

Relaxing synchrony

Process does nothing for the protocol during this time!

when \(p_i \) sends "take a snapshot" along its outgoing channels
when \(p_i \) sends "take a snapshot" beyond the first time from \(p_k \)
when \(p_i \) has received "take a snapshot" on all channels, it sends collected state to \(p_0 \) and stops.
Snapshots: a perspective

The global state Σ^* saved by the snapshot protocol is a consistent global state.

But did it ever occur during the computation?

- a distributed computation provides only a partial order of events
- many total orders (runs) are compatible with that partial order
- all we know is that Σ^* could have occurred

We are evaluating predicates on states that may have never occurred!