Empirical Optimization

Keshav Pingali

Context: HPC software

- Traditional approach
 - Hand-optimized code: (e.g.) BLAS
 - Problem: tedious to write by hand
- Alternatives:
 - Restructuring compilers
 - General purpose: generate code from high-level specifications
 - Use architectural models to determine optimization parameters
 - Library generators
 - Problem-specific: (e.g.) ATLAS for BLAS, FFTW for FFT
 - Use empirical optimization to determine optimization parameters

How good are these approaches?

Our approach

- Original ATLAS Infrastructure
- Model-Based ATLAS Infrastructure

BLAS

- Let us focus on MMM:

  ```
  for (i = 0; i < M; i++)
  for (j = 0; j < N; j++)
  for (k = 0; k < K; k++)
  C[i][j] += A[i][k]*B[k][j]
  ```

- Properties
 - Very good reuse: O(N^2) data, O(N^3) computation
 - Many optimization opportunities
 - Few "real" dependencies
 - Will run poorly on modern machines
 - Poor use of cache and registers
 - Poor use of processor pipelines

Optimizations

- Cache-level blocking (tiling)
 - Atlas blocks only for L1 cache
 - NB: L1 cache time size
 - Register-level blocking
 - Important to hold array values in registers
 - M.U1: register tile size
 - Software pipelining
 - Unroll and schedule operations
 - Latency, xFetch: scheduling parameters
 - Versioning
 - Dynamically decide which way to compute
 - Back-end compiler optimizations
 - Scalar Optimizations
 - Instruction Scheduling

Cache-level blocking (tiling)

- Tiling in ATLAS
 - Only square tiles (NbNxNbNxNb)
 - Working set of tile fits in L1
 - Tiles are usually copied to continuous storage
 - Special "clean-up" code generated for boundaries
- Mini-MMM

```python
for (i = 0; i < M; i++)
for (j = 0; j < N; j++)
for (k = 0; k < K; k++)
C[i][j] = A[i][k]*B[k][j]
```
Register-level blocking

- Micro-MMM
 - A: MM1
 - B: NUx1
 - C: MUxNU
- Mini-MMM with Micro-MMM inside
- Unroll loops by MU, NU, and KU
- MU and NU: optimization parameters
 - MU * NU + MU + NU registers
- Special clean-up code required if NB is not a multiple of MU, NU, KU
- MU, NU, KU: optimization parameters

Scheduling

- FMA Present?
- Schedule Computation
 - Using Latency
- Schedule Memory Operations
 - Using IFetch, NFetch, FFetch

ATLAS Search Strategy

- Multi-dimensional optimization problem:
 - Independent parameters: NB, MU, NU, KU, ...
 - Dependent parameter: MFlops
 - Function from parameters to variables is given implicitly; can be evaluated repeatedly
- One optimization strategy: orthogonal line search
 - Optimize along one dimension at a time, using reference values for parameters not yet optimized
 - Not guaranteed to find optimal point, but might come close

Find Best NB

- Search in following range
 - 16 <= NB <= 80
 - NB^2 <= L1Size
- In this search, use simple estimates for other parameters
 - (eg) KU: Test each candidate for
 - Full unrolling (KU = NB)
 - No unrolling (KU = 1)

Model-based optimization

- Original ATLAS Infrastructure
- Model-Based ATLAS Infrastructure

Modeling for Optimization Parameters

- Optimization parameters
 - NB
 - Hierarchy of Models (later)
 - MU, NU
 - MU * NU + MU + NU + Latency <= NR
 - KU
 - maximize subject to L1 Instruction Cache
 - Latency
 - BL <= 1x2
 - MulAdd
 - hardware parameter
 - MFAdd = set to 2
Largest NB for no capacity/conflict misses

- If tiles are copied into contiguous memory, condition for only cold misses:
 \[3^2 \leq \frac{L1\text{Size}}{2^2} \]

Cache model:
- Fully associative
- Line size 1 Word
- Optimal Replacement

Bottom line:
- \(NB^2 + NB + 1 < C \)
- One full matrix
- One row / column
- One element

Summary: Modeling for Tile Size (NB)

- Models of increasing complexity
 - Whole work-set fits in L1
 - \(NB^2 + NB + 1 < C \)
 - Fully Associative
 - Optimal Replacement
 - Line size 1 word
 - Line size > 1 word
 - LRU Replacement

Largest NB for no capacity misses

- MMM:
 - \(\text{Not used in context} \)
- Cache model:
 - Fully associative
 - Line size 1 Word
 - Optimal Replacement

Summary of model

Experiments

- Ten modern architectures
- Model did well on RISC architectures
- UltraSparc: did better
- Model did not do as well on Itanium
- Substantial gap between ATLAS CGw/S and ATLAS Unleashed on some architectures

Some sensitivity graphs for Alpha 21264
Eliminating performance gaps

- Think globally, search locally
- Gap between model-based optimization and empirical optimization can be eliminated by
 - Local search:
 - for small performance gaps
 - in neighborhood of model-predicted values
 - Model refinement:
 - for large performance gaps
 - must be done manually
 - (future) machine learning: learn new models automatically
- Model-based optimization and empirical optimization are not in conflict

Small performance gap: Alpha 21264

- Local search:
 - Around model-predicted NB
 - Hill-climbing not useful
 - Search interval: \([NB-lcm(MU,NU),NB+lcm(MU,NU)]\)
 - Local search for MU,NU
 - Hill-climbing OK

Large performance gap: Itanium

- Memory hierarchy
 - L1 data cache: 16 KB
 - L2 cache: 256 KB
 - L3 cache: 3 MB
- Diagnosis:
 - Model tiles for L1 cache
 - On Itanium, FP values not cached in L1 cache!
 - Performance gap goes away if we model for L2 cache (NB = 105)
 - Obtain even better performance if we model for L3 cache (NB = 360, 4.6 GFlops)
- Problem:
 - Tiling for L2 or L3 may be better than tiling for L1
 - How do we determine which cache level to tile for??
- Our solution: model refinement + a little search
 - Determine tile sizes for all cache levels
 - Choose between them empirically

Large performance gap: Opteron

- Opteron characteristics
 - Small number of logical registers
 - Out-of-order issue
 - Register renaming
- For such processors, it is better to
 - let hardware take care of scheduling dependent instructions,
 - use logical registers to implement a bigger register tile.
 - x86 has 8 logical registers
 - register tiles must be of the form \((x,1)\) or \((1,x)\)
Refined model

- Refined model is not complex.
- Refined model by itself eliminates most performance gaps.
- Local search eliminates all performance gaps.

Bottom line

- Refined model is not complex.
- Refined model by itself eliminates most performance gaps.
- Local search eliminates all performance gaps.

Future Directions

- Repeat study with FFTW/SPIRAL
 - Uses search to choose between algorithms
- Feed insights back into compilers
 - Build a linear algebra compiler for generating high-performance code for dense linear algebra codes
 - Start from high-level algorithmic descriptions
 - Use restructuring compiler technology
- Generalize to other problem domains
- How can we get such systems to learn from experience?