Fixpoint equations

Goal

- Many problems in programming languages can be formulated as a set of mutually recursive equations of the following form:
 - Example: fixing first/follow sets in LL(k) parsing
 - PL semantics
 - Dataflow analysis
 - Type inference

- General questions
 - What assumptions on D, f, and g are sufficient to ensure that such a system of equations has a solution?
 - If a system has multiple solutions, which solution is the one we really want?
 - How do we compute that solution?

- Keywords:
 - Assumptions on D: partially ordered set, semi-lattice, lattice, complete lattice, ...
 - Assumptions on functions f, g: monotonic, continuous, extensive, ...
 - Solutions: fixpoint, least fixpoint, greatest fixpoint, ...

Game plan

- Finite partially-ordered set with least element: D
- Function f: D→D
- Monotonic function f: D→D
- Fixpoints of monotonic function f:D→D
 - Least fixpoint
- Solving equation x = f(x)
 - Least solution is least fixpoint of f
- Generalization to case when D has a greatest element T
 - Least and greatest solutions to equation x = f(x)
- Generalization of systems of equations
- Semi-lattices and lattices

Partially-ordered set

- Set D with a binary relation ≤ that is
 - reflexive: x ≤ x
 - anti-symmetric: x ≤ y and y ≤ x ⇒ x = y
 - transitive: x ≤ y and y ≤ z ⇒ x ≤ z
- Example: set of integers ordered by standard < relation
 - Graphical representation of poset:
 - Graph in which nodes are elements of D and relation ≤ is shown by arrows
 - Usually we omit transitive arrows to simplify picture

Another example of poset

- Powerset of any set ordered by set containment is a poset
- In example shown to the left, poset elements are (), {a}, {a,b},{a,b,c}, etc.
 - x ≤ y if x is a subset of y

Finite poset with least element

- Poset in which
 - set is finite
 - there is a least element that is below all other elements in poset
- Examples:
 - Set of primes ordered by natural ordering is a poset but is not finite
 - Factors of 12 ordered by natural ordering on integers is a finite poset with least element
 - Powerset example from previous slide is a finite poset with least element ({}
Domain

- Since “finite partially-ordered set with a least element” is a mouthful, we will just abbreviate it to “domain”.
- Later, we will generalize the term “domain” to include other posets of interest to us in the context of dataflow analysis.

Functions on domains

- If D is a domain, f:D→D
 - a function maps each element of D to some element of D itself
- Examples: for D = powerset of {a,b,c}
 - f(x) = x U {a}
 - so f maps {} to {a}, {b} to {a,b} etc.
 - g(x) = x \{a\}
 - h(x) = {a} - x

Monotonic functions

- Function f: D→D where D is a domain is monotonic if
 - x ≤ y ⇒ f(x) ≤ f(y)
- Common confusion: people think f is monotonic if x < f(x). This is a different property called extensivity.
- Intuition:
 - think of f as an electrical circuit mapping input to output
 - f is monotonic if increasing the input voltage causes the output voltage to increase or stay the same
 - f is extensive if the output voltage is greater than or equal to the input voltage

Examples

- Domain D is powerset of {a,b,c}
- Monotonic functions: (x in D)
 - x → {} (why?)
 - x → x U {a}
 - x → x \{a\}
- Not monotonic:
 - x → {a} - x
- Why? Because {} is mapped to {a} and {a} is mapped to {}.
- Extensivity
 - x → x U {a} is extensive and monotonic
 - x → x \{a\} is not extensive but monotonic
- Exercise: define a function on D that is extensive but not monotonic

Fixpoint of f:D→D

- Suppose f: D→D. A value x is a fixpoint of f if f(x) = x. That is, f maps x to itself.
- Examples: D is powerset of {a,b,c}
 - Identity function: x → x
 - Every point in domain is a fixpoint of this function
 - x → x U {a}
 - {}, {a}, {a,b}, {a,c}, {a,b,c} are all fixpoints
 - x → {a} - x
 - no fixpoints

Fixpoint theorem(I)

- If D is a domain, ⊥ is its least element, and f:D→D is monotonic, then f has a least fixpoint that is the largest element in the sequence (chain)
 - ⊥, f(⊥), f(f(⊥)), f(f(f(⊥))), ….
- Examples: for D = power-set of {a,b,c}, so ⊥ is {}
 - Identity function: sequence is {}, {}, {}, … so least fixpoint is {}, which is correct.
 - x → x U {a}; sequence is {}, {a}, {a}, {a}, … so least fixpoint is {a} which is correct.
Proof of fixpoint theorem

- Largest element of chain is a fixpoint:
 - ⊥ ≤ f(⊥) (by definition of ⊥)
 - f(⊥) ≤ f(f(⊥)) (from previous fact and monotonicity of f)
 - f(f(⊥)) ≤ f(f(f(⊥))) (same argument)
 - since the set D is finite, this chain cannot grow arbitrarily, so it has some largest element that f maps to itself. Therefore, we have constructed a fixpoint of f.
- This is the least fixpoint
 - let p be any other fixpoint of f
 - ⊥ < p (from definition of ⊥)
 - So f(⊥) ≤ f(p) (monotonicity of f)
 - similarly f(f(⊥)) ≤ p etc.
 - therefore all elements of chain are ≤ p, so largest element of chain must be ≤ p
 - therefore largest element of chain is the least fixpoint of f.

Solving equations

- If D is a domain and f:D→D is monotonic, then the equation x = f(x) has a least solution given by the largest element in the sequence ⊥, f(⊥), f(f(⊥)), f(f(f(⊥))), ...
- Proof: follows trivially from fixpoint theorem

Easy generalization

- Proof goes through even if D is not a finite set but only has finite height
 - no infinite chains

Another result

- If D is a domain with a greatest element T and f:D→D is monotonic, then the equation x = f(x) has a greatest solution given by the smallest element in the descending sequence T, f(T), f(f(T)), f(f(f(T))), ...
- Proof: left to reader

Functions with multiple arguments

- If D is a domain, a function f(x,y):DxD→D that takes two arguments is said to be monotonic if it is monotonic in each argument when the other argument is held constant.
- Intuition:
 - electrical circuit has two inputs
 - if you increase voltage on any one input keeping voltage on other input fixed, the output voltage stays the same or increases

Fixpoint theorem(II)

- If D is a domain and f,g:DxD→D are monotonic, the following system of simultaneous equations has a least solution computed in the obvious way.
 \[x = f(x,y) \]
 \[y = g(x,y) \]
- You can easily generalize this to more than two equations and to the case when D has a greatest element T.
Upper and lower bounds

- If \(D, \leq \) is a poset and \(S \subseteq D \), \(l \in D \) is a lower bound of \(S \) if
 \[\forall x \in S. \quad l \leq x \]
- Example: lower bounds of \(\{c,d\} \) are \(d \) and \(f \)
- In general, a given \(S \) may have many lower bounds.
- Greatest lower bound (glb) of \(S \): greatest element of \(D \) that is a lower bound of \(S \)
 - Caveat: glb may not always exist
 - Example: lower bounds of \(\{b,c\} \) are \(d, e, f \) but there is no glb
- If for every pair of elements \(x, y \in D \), \(\text{glb}(\{x,y\}) \) exists, we can define a function called meet \(\wedge : D \times D \to D \)
 - Idempotent: \(x \wedge x = x \)
 - Commutative: \(x \wedge y = y \wedge x \)
 - Associative: \(x \wedge (y \wedge z) = (x \wedge y) \wedge z \)
- Analogous notions: upper bounds, least upper bounds, join \(\vee \)
- Meet semilattice:
 - partially ordered set in which every pair of elements has a glb
- Join semilattice
 - analogous notion
- Lattice:
 - both a meet and join semilattice

Fixpoint equations in lattices

- If \((D, \leq, \wedge, \vee) \) is a finite lattice, it has a least and greatest element.
- Meet and join functions are monotonic
- Therefore, if \((D, \leq, \wedge, \vee) \) is a finite lattice, fixpoint theorem (II) applies even if some of the functions \(f, g \) etc. are \(\wedge \) or \(\vee \)

Computing the least solution for a system of equations

- Consider
 \[
 \begin{align*}
 x &= f(x,y,z) \\
 y &= g(x,y,z) \\
 z &= h(x,y,z)
 \end{align*}
 \]
- Obvious iterative strategy: evaluate all equations at every step (Jacobi iteration)
 \[
 \begin{bmatrix}
 f(\bot, \bot, \bot) \\
 g(\bot, \bot, \bot) \\
 h(\bot, \bot, \bot)
 \end{bmatrix}
 \]
 ...

Work-list based algorithm

- Obvious point: it is not necessary to reevaluate a function if its inputs have not changed
- Worklist based algorithm:
 - initialize worklist with all equations
 - initialize solution vector \(S \) to all \(\bot \)
 - while worklist not empty do
 - get equation from worklist
 - evaluate rhs of equation with current solution vector values and update entry corresponding to the variable in solution vector
 - put all equations that use this variable in their RHS on worklist
- You can show that this algorithm will compute the least solution to the system of equations