Analysis of programs with pointers

Simple example

```
x := 5             S1
ptr := &x          S2
*ptr := 9          S3
y := x             S4
```

Program model

- For now, only types are int and int*
- No heap
 - All pointers point to only stack variables
- No procedure or function calls
- Statements involving pointer variables:
 - address: x := &y
 - copy: x := y
 - load: x := *y
 - store: *x := y
- Arbitrary computations involving ints

Points-to relation

- Directed graph:
 - nodes are program variables
 - edge (a,b): variable a points-to variable b

- Can use a special node to represent NULL
- Points-to relation is different at different program points
Points-to graph

- Out-degree of node may be more than one
 - if points-to graph has edges (a,b) and (a,c), it means that variable a may point to either b or c
 - depending on how we got to that point, one or the other will be true
 - path-sensitive analyses: track how you got to a program point (we will not do this)

```plaintext
if (p) then x := &y
else x := &z
```

What does x point to here?

Ordering on points-to relation

- Subset ordering: for a given set of variables
 - Least element is graph with no edges
 - G1 <= G2 if G2 has all the edges G1 has and maybe some more
- Given two points-to relations G1 and G2
 - G1 U G2: least graph that contains all the edges in G1 and in G2

Overview

- We will look at three different points-to analyses.
- Flow-sensitive points-to analysis
 - Dataflow analysis
 - Computes a different points-to relation at each point in program
- Flow-insensitive points-to analysis
 - Computes a single points-to graph for entire program
 - Andersen’s algorithm
 - Natural simplification of flow-sensitive algorithm
 - Steensgard’s algorithm
 - Nodes in tree are equivalence classes of variables
 - if x may point-to either y or z, put y and z in the same equivalence class
 - Points-to relation is a tree with edges from children to parents rather than a general graph
 - Less precise than Andersen’s algorithm but faster

Example

- Andersen’s algorithm
- Flow-sensitive algorithm
- Steensgard’s algorithm
Notation
- Suppose S and S_1 are set-valued variables.
- $S \leftarrow S_1$: strong update
 - set assignment
- $S U \leftarrow S_1$: weak update
 - set union: this is $S \leftarrow S U S_1$

Flow-sensitive algorithm

Dataflow equations
- Forward flow, any path analysis
- Confluence operator: $G_1 U G_2$
- Statements

Dataflow equations (contd.)
Strong vs. weak updates

- **Strong update:**
 - At assignment statement, you know precisely which variable is being written to.
 - Example: `x := ...`
 - You can remove points-to information about `x` coming into the statement in the dataflow analysis.

- **Weak update:**
 - You do not know precisely which variable is being updated; only that it is one among some set of variables.
 - Example: `*x := ...`
 - Problem: at analysis time, you may not know which variable `x` points to (see slide on control-flow and out-degree of nodes).
 - Refinement: if out-degree of `x` in points-to graph is 1 and `x` is known not be nil, we can do a strong update even for `*x := ...`
Flow-insensitive analysis

- Flow-sensitive analysis computes a different graph at each program point.
- This can be quite expensive.
- One alternative: flow-insensitive analysis
 - Intuition: compute a points-to relation which is the least upper bound of all the points-to relations computed by the flow-sensitive analysis
- Approach:
 - Ignore control-flow
 - Consider all assignment statements together
 - replace strong updates in dataflow equations with weak updates
 - Compute a single points-to relation that holds regardless of the order in which assignment statements are actually executed

Andersen’s algorithm

- Statements

Example

```c
int main(void)
{
    struct cell {int value;
    struct cell *next;}
    int sum;
    struct cell x,y,z,*p;
    x.value = 5;
    x.next = &y;
    y.value = 6;
    y.next = &z;
    z.value = 7;
    z.next = NULL;
    p = &x;
    sum = 0;
    while (p != NULL) {
        sum = sum + (*p).value;
        p = (*p).next;
    }
    return sum;
}
```

Solution to flow-insensitive equations

- Compare with points-to graphs for flow-sensitive solution
- Why does p point-to NULL in this graph?
Andersen's algorithm formulated using set constraints

- Statements

\[pt : \text{var} \rightarrow 2^\text{var} \]

\[x := \& y \quad x := y \]

\[y \in pt(x) \quad \forall a \in pt(y), pt(x) \supseteq pt(a) \]

\[x := y \quad \exists x := y \]

\[pt(x) \supseteq pt(y) \quad \forall a \in pt(x), pt(a) \supseteq pt(y) \]

Steensgard's algorithm

- Flow-insensitive
- Computes a points-to graph in which there is no fan-out
 - In points-to graph produced by Andersen's algorithm, if \(x \) points to \(y \) and \(z \) and \(y \) are collapsed into an equivalence class
 - Less accurate than Andersen's but faster
- We can exploit this to design an \(O(N^*\alpha(N)) \) algorithm, where \(N \) is the number of statements in the program.

Steensgard's algorithm using set constraints

- Statements

\[pt : \text{var} \rightarrow 2^\text{var} \]

No fan-out

\[\forall x, y, z : x \in pt(x), pt(y) = pt(z) \]

\[x := \& y \quad x := y \]

\[y \in pt(x) \quad \forall a \in pt(y), pt(x) = pt(a) \]

\[x := y \quad \exists x := y \]

\[pt(x) = pt(y) \quad \forall a \in pt(x), pt(a) = pt(y) \]

Trick for one-pass processing

- Consider the following equations

\[pt(x) = pt(y) \quad dummy \in pt(x) \]

\[z \in pt(x) \quad pt(x) = pt(y) \]

\[z \in pt(x) \]

- When first equation on left is processed, \(x \) and \(y \) are not pointing to anything.
- Once second equation is processed, we need to go back and reprocess first equation.
- Trick to avoid doing this: when processing first equation, if \(x \) and \(y \) are not pointing to anything, create a dummy node and make \(x \) and \(y \) point to that.
 - This is like solving the system on the right
- It is easy to show that this avoids the need for revisiting equations.
Algorithm

- Can be implemented in single pass through program
- Algorithm uses union-find to maintain equivalence classes (sets) of nodes
- Points-to relation is implemented as a pointer from a variable to a representative of a set
- Basic operations for union find:
 - rep(v): find the node that is the representative of the set that v is in
 - union(v1,v2): create a set containing elements in sets containing v1 and v2, and return representative of that set

Auxiliary methods

```java
class var {
    //instance variables
    points_to: var;
    name: string;
    //constructor; also creates singleton set in union-find data structure
    var(string);
    //class method; also creates singleton set in union-find data structure
    make-dummy-var(): var;
    //instance methods
    get_pt(): var;
    set_pt(var);//updates rep
}
```

Initialization:
- make each program variable into an object of type var
- enter object into union-find data structure

for each statement S in the program do
 - S is x := &y: {if (pt(x) == null)
 x.set-pt(rep(y));
 else rec-union(pt(x),y);
 }
 - S is x := y: {if (pt(x) == null and pt(y) == null)
 x.set-pt(var.make-dummy-var());
 else if (pt(y) == null) t2 = pt(x);
 else if (pt(x) == null) t2 = pt(y);
 else t2 = null;
 t1 = rec-union(pt(x),pt(y));
 t2.set-pt(t1);
 }
 - S is x := *y: {if (pt(y) == null)
 y.set-pt(var.make-dummy-var());
 var a := pt(y);
 if(pt(a) == null)
 a.set-pt(var.make-dummy-var());
 x.set-pt(rec-union(pt(x),pt(a)));
 }
 - S is *x := y: {if (pt(x) == null)
 x.set-pt(var.make-dummy-var());
 var a = pt(x);
 if(pt(a) == null)
 a.set-pt(var.make-dummy-var());
 y.set-pt(rec-union(pt(y),pt(a)));
 }
```

Inter-procedural analysis

- What do we do if there are function calls?

```
x1 = &a
y1 = &b
swap(x1, y1)
```

```
x2 = &a
y2 = &b
swap(x2, y2)
```

```java
swap (p1, p2) {
 t1 = *p1;
 t2 = *p2;
 *p1 = t2;
 *p2 = t1;
}
```
Two approaches

- **Context-sensitive approach:**
  - treat each function call separately just like real program execution would
  - problem: what do we do for recursive functions?
    - need to approximate

- **Context-insensitive approach:**
  - merge information from all call sites of a particular function
  - in effect, inter-procedural analysis problem is reduced to intra-procedural analysis problem
  - Context-sensitive approach is obviously more accurate but also more expensive to compute

---

Context-insensitive approach

For now, assume we do not have function parameters
- this means we know all the call sites for a given function

Set up equations for binding of actual and formal parameters at each call site for that function
- use same variables for formal parameters for all call sites

Intuition: each invocation provides a new set of constraints to formal parameters
Swap example

\[
\begin{align*}
x_1 &= \&a \\
y_1 &= \&b \\
p_1 &= x_1 \\
p_2 &= y_1 \\
x_2 &= \&a \\
y_2 &= \&b \\
p_1 &= x_2 \\
p_2 &= y_2 \\
t_1 &= *p_1; \\
t_2 &= *p_2; \\
*p_1 &= t_2; \\
*p_2 &= t_1;
\end{align*}
\]

Heap allocation

- Simplest solution:
  - use one node in points-to graph to represent all heap cells
- More elaborate solution:
  - use a different node for each malloc site in the program
- Even more elaborate solution: shape analysis
  - goal: summarize potentially infinite data structures
  - but keep around enough information so we can disambiguate pointers from stack into the heap, if possible

Summary

<table>
<thead>
<tr>
<th>Less precise</th>
<th>More precise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equality-based</td>
<td>Subset-based</td>
</tr>
<tr>
<td>Flow-insensitive</td>
<td>Flow-sensitive</td>
</tr>
<tr>
<td>Context-insensitive</td>
<td>Context-sensitive</td>
</tr>
</tbody>
</table>

No consensus about which technique to use
Experience: if you are context-insensitive, you might as well be flow-insensitive

History of points-to analysis

<table>
<thead>
<tr>
<th>Publisher</th>
<th>Article</th>
<th>Volume</th>
<th>Year</th>
<th>Pages</th>
<th>Code Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ryder and Rayside</td>
<td>1995-1996</td>
<td>800-800</td>
<td>2000-2000</td>
<td>1-10</td>
<td>5-10</td>
</tr>
</tbody>
</table>

from Ryder and Rayside