String Matching: Boyer-Moore Algorithm

Greg Plaxton
Theory in Programming Practice, Fall 2005
Department of Computer Science
University of Texas at Austin
The (Exact) String Matching Problem

• Given a text string t and a pattern string p, find all occurrences of p in t
Three Efficient String Matching Algorithms

- Rabin-Karp
 - This is a simple randomized algorithm that tends to run in linear time in most scenarios of practical interest
 - The worst case running time is as bad as that of the naive algorithm, i.e., $\Theta(\bar{p} \cdot \bar{t})$

- Knuth-Morris-Pratt
 - The worst case running time of this algorithm is linear, i.e., $O(\bar{p} + \bar{t})$

- Boyer-Moore (this lecture and the next)
 - This algorithm tends to have the best performance in practice, as it often runs in sublinear time
 - The worst case running time is as bad as that of the naive algorithm
At any moment, imagine that the pattern is \textit{aligned} with a portion of the text of the same length, though only a part of the aligned text may have been matched with the pattern.

Henceforth, alignment refers to the substring of \(t \) that is aligned with \(p \) and \(l \) is the index of the left end of the alignment; i.e., \(p[0] \) is aligned with \(t[l] \) and, in general, \(p[i], 0 \leq i < m \), with \(t[l + i] \).

Whenever there is a mismatch, the pattern is \textit{shifted} to the right, i.e., \(l \) is increased, as explained in the following sections.
Algorithm Outline

• The overall structure of the program is a loop that has the invariant
 Q1: Every occurrence of \(p \) in \(t \) that starts before \(l \) has been recorded

• The following loop records every occurrence of \(p \) in \(t \) eventually

\[
\begin{align*}
l &:= 0; \\
\{ & \text{Q1} \} \\
\text{loop} \\
\{ & \text{Q1} \} \\
& \text{“increase } l \text{ while preserving Q1”} \\
\text{endloop}
\end{align*}
\]
The Variable j

- Next, we show how to increase l while preserving Q1

- We introduce variable j, $0 \leq j < m$, with the meaning that the suffix of p starting at position j matches the corresponding portion of the alignment

 \[Q2: \ 0 \leq j \leq m, \ p[j..m] = t[l + j..l + m] \]

- Thus, the whole pattern is matched when $j = 0$, and no part has been matched when $j = m$
A Refinement of the Previous Algorithm

• We establish Q2 by setting j to m

• We match the symbols from right to left of the pattern until we find a mismatch or the whole pattern is matched

\[
j := m; \\
\{ Q2 \} \\
\textbf{while} \ j > 0 \land p[j - 1] = t[l + j - 1] \ \textbf{do} \ j := j - 1 \ \textbf{ endwhile} \\
\{ Q1 \land Q2 \land (j = 0 \lor p[j - 1] \neq t[l + j - 1]) \} \\
\textbf{if} \ j = 0 \\
\quad \textbf{then} \ \{ Q1 \land Q2 \land j = 0 \} \ \text{record a match at } l; \ l := l' \ \{ Q1 \} \\
\quad \textbf{else} \ \{ Q1 \land Q2 \land j > 0 \land p[j - 1] \neq t[l + j - 1] \} \ l := l'' \ \{ Q1 \} \\
\textbf{endif} \\
\{ Q1 \} \\
\]

• How do we compute l' and l''?
Computation of l'

- This turns out to be essentially a special case of the computation of l''.
- So we focus primarily on the computation of l'' in the presentation that follows.
Computation of l''

- The precondition for the computation of l'' is,

 $$Q1 \land Q2 \land j > 0 \land p[j - 1] \neq t[l + j - 1].$$

- We consider two heuristics, each of which can be used to calculate a value of l''; the greater value is assigned to l
 - The first heuristic, called the *bad symbol heuristic*, exploits the fact that we have a mismatch at position $j - 1$ of the pattern
 - The second heuristic, called the *good suffix heuristic*, uses the fact that we have matched a (possibly empty) suffix of p with the suffix of the alignment, i.e., $p[j..m] = t[l + j..l + m]$.
The Bad Symbol Heuristic: Easy Case

- Suppose we have the pattern “attendance” that we have aligned against a portion of the text whose suffix is “hce”, as shown below

```
text    - - - - - - - h c e
pattern attendance
align   attendance
```

- The suffix “ce” has been matched; the symbols ’h’ and ’n’ do not match

- There is no ’h’ in the pattern, so no match can include this ’h’ of the text

- Hence, the pattern may be shifted to the symbol following ’h’ in the text, as shown by align above
The Bad Symbol Heuristic: The More Interesting Case

• Next, suppose the mismatched symbol in the text is 't', as shown below

 \[
 \begin{array}{c}
 \text{text} \\
 \text{pattern}
 \end{array}
 \begin{array}{c}
 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
 t \ c \ e
 \end{array}
 \begin{array}{c}
 \text{pattern} \\
 \text{text}
 \end{array}
 \begin{array}{c}
 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
 a \ t \ t \ e \ n \ d \ a \ n \ c \ e
 \end{array}
 \]

• There are two ways to align the 't' in the pattern with a 't' in the text

 \[
 \begin{array}{c}
 \text{text} \\
 \text{align1} \\
 \text{align2}
 \end{array}
 \begin{array}{c}
 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
 t \ c \ e \ \ldots \ldots \ldots \ldots \ldots \\
 t \ c \ e \ \ldots \ldots \ldots \ldots \ldots \\
 t \ c \ e
 \end{array}
 \begin{array}{c}
 \text{pattern} \\
 \text{text}
 \end{array}
 \begin{array}{c}
 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
 a \ t \ t \ e \ n \ d \ a \ n \ c \ e \\
 a \ t \ t \ e \ n \ d \ a \ n \ c \ e \\
 a \ t \ t \ e \ n \ d \ a \ n \ c \ e
 \end{array}
 \]

• Which alignment should we choose?
Minimum Shift Rule

• Rule: Shift the pattern by the minimum allowable amount

• Justification: Preservation of Q1
 – We never skip over a possible match following this rule, because no smaller shift yields a match at the given position, and, hence no full match

• So, in the example of the previous slide, we should use align1
Motivation for the Minimum Shift Rule: Example

• In this example, the leftmost symbol ’y’ of the pattern “xxy” fails to match the text symbol ’x’

<table>
<thead>
<tr>
<th>text</th>
<th>-</th>
<th>-</th>
<th>x</th>
<th>-</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>pattern</td>
<td>x</td>
<td>x</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>align1</td>
<td>x</td>
<td>x</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>align2</td>
<td>x</td>
<td>x</td>
<td>y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• If we were to advance to alignment align2, we might skip a match in position in align1, violating invariant Q1
Bad Symbol Heuristic: Implementation

• For each symbol in the alphabet, we precalculate its rightmost position in the pattern

• if the mismatched symbol’s rightmost occurrence in the pattern is at $p[k]$, then $p[0]$ is aligned with $t[l - k + j - 1]$, or l is increased by $-k + j - 1$

• For a nonexistent symbol in the pattern, like 'h', we set its rightmost occurrence to -1 so that l is increased to $l + j$, as required

• Note that the shift $-k + j - 1$ is negative if $k > j - 1$, which can easily occur
 – But the good suffix heuristic always yields a positive increment for l, so the maximum of these two increments is positive
The Good Suffix Heuristic

- Suppose we have a pattern “abxabyab” of which we have already matched the suffix “ab”, but there is a mismatch with the preceding symbol ‘y’, as shown below

 \[
 \begin{array}{c}
 \text{text} \\
 \text{pattern}
 \end{array}
 \begin{array}{ccccccccc}
 - & - & - & - & - & z & a & b & - & - \\
 a & b & x & a & b & y & a & b
 \end{array}
 \]

- Then, we shift the pattern to the right so that the matched part is occupied by the same symbols, “ab”; this is possible only if there is another occurrence of “ab” in the pattern
Case 1: The Matched Suffix Occurs Elsewhere in the Pattern

• For the pattern of the previous slide, the matched portion “ab” occurs in two other places

• Thus there are two possible alignments to consider, as shown below

```
text    -    -    z    |    a    b    |    -    -    -    -    -    -
align1   a    b    ×    |    a    b    y    a    b
align2   a    b                     |    x    a    b    y    a    b
```

• By the minimum shift rule, we select align1
Case 2: The Matched Suffix Does Not Occur Elsewhere

- No complete match of the suffix s is possible if s does not occur elsewhere in p

- This possibility is shown in the example below, where s is “xab”

 \[
 \begin{array}{c|ccc}
 \text{text} & _ & y & x & a & b & _ & _ & _ \\
 \text{pattern} & a & b & x & a & b \\
 \text{align} & _ & _ & a & b & x & a & b \\
 \end{array}
 \]

- In this case, the best that can be done is to match with a suffix of “xab” that is also a prefix of p

- In the example above, “ab” is a suffix of s (and hence also a suffix of p) that is also a prefix of p
Good Suffix Heuristic

• Let s denote the matched suffix and let

$$R = \{r \text{ is a proper prefix of } p \land (r \text{ is a suffix of } s \lor s \text{ is a suffix of } r)\}$$

• The good suffix heuristic aligns an r in R with the end of the previous alignment

• According to the minimum shift rule, the amount $b(s)$ by which the pattern is shifted is

$$b(s) = \min\{\bar{p} - \bar{r} \mid r \in R\}$$

• Next time we will develop an efficient algorithm for computing $b(s)$
Updating l: Summary

- In the algorithm outlined earlier, we have two assignments to l
 - $l := l'$, when the whole pattern has matched
 - $l := l''$, when $p[j..p] = t[l + j..l + p]$ and $p[j - 1] \neq t[l + j - 1]$

- These assignments are implemented as follows
 - $l := l'$ is implemented by $l := l + b(p)$
 - $l := l''$ is implemented by $l := l + \max(b(s), j - 1 - rt(h))$, where $s = p[j..p]$, $h = t[l + j - 1]$, and $rt(h)$ is the index of the rightmost occurrence of h in p (or -1 if h does not occur in p)