The Stability Formula

Vladimir Lifschitz and Stephen Roller
{vl, roller}@cs.utexas.edu

May 5, 2011

Abstract

We show that the stable models of non-disjunctive logic programs may be expressed using a second-order logical formula syntactically similar to program completion.

1 Introduction

Since its introduction in [?], stable model semantics have repeatedly been shown to be useful in many areas, including both industrial applications [?] and theoretical constructs. Within a classroom setting, however, stable model semantics can often appear remote or unintuitive at first to students.

In this paper, we present the stability formula operator, SF. The stability formula operator is a novel definition of the stable models for logic programs meeting certain syntactic requirements. We show equivalence with the SM operator introduced in [Lifschitz, 2010], a known definition of stable model semantics.

Given the many existing definitions of stable models [?], another specialized definition may not necessarily be interesting in its own right. However, the terms of the stability formula of a program bear a notable syntactic similarity to the completion formulas found in program completion semantics [?]. When taught side-by-side, the similarity of stability formulas and completion formulas can aid students in understanding the semantic differences.

Stability formulas are only defined for flat, non-disjunctive programs. That is, we only consider programs of the form

$$\Pi = \bigwedge_{i=1}^{n} \forall(F_i \rightarrow P_i(t)),$$

where F_i does not contain implication and \forall is understood as universal closure over all variables. Furthermore, for the sake of simplicity, we consider all predicates to be intensional predicates in the sense of [Lifschitz, 2010], but this limitation may be straightforwardly addressed within the framework of this proof.
2 The Stability Formula operator

The Stability Formula operator, \(SF \), is defined for a logic program, \(\Pi \), as

\[
SF[\Pi] = \bigwedge_{P \in \mathbf{P}} \forall x(P(x) \iff \forall p(\Pi^\circ(p) \rightarrow p(x))),
\]

(1)

where \(\mathbf{P} \) is a tuple of all predicates appearing in \(\Pi \), \(p \) is a tuple of corresponding distinct predicate variables, and \(\Pi^\circ \) is defined as the result of replacing of each predicate constant \(P \) appearing within \(\Pi \) with its corresponding variable \(p \) wherever \(P \) does not appear in the scope of negation.

Example Consider the simple logic program containing just two rules,

\[
\forall x(\neg P(x) \rightarrow Q(x)) \land P(a).
\]

(2)

Since there are two predicates in (2), we will need to construct a stability formula for each of the predicates \(P \) and \(Q \). The stability formula for \(P \) is

\[
\forall x(P(x) \iff \forall pq(\Pi^\circ(p, q) \rightarrow p(x)))
\]

and the stability formula for \(Q \) is

\[
\forall x(Q(x) \iff \forall pq(\Pi^\circ(p, q) \rightarrow q(x))).
\]

Recall that \(\Pi^\circ(p, q) \) is defined as replacing every instance of \(P \) and \(Q \) with \(p \) and \(q \) whenever the instance is outside the scope of negation. In this example, \(\Pi^\circ(p, q) \) is

\[
\forall x(\neg P(x) \rightarrow q(x)) \land p(a),
\]

and so our stability formula may be rewritten as

\[
\forall x(P(x) \leftrightarrow \forall pq(\forall y(\neg P(y) \rightarrow q(y)) \land p(a) \rightarrow p(x))) \land
\forall x(Q(x) \leftrightarrow \forall pq(\forall y(\neg P(y) \rightarrow q(y)) \land p(a) \rightarrow q(x))).
\]

(3)

Note that we chose to rename the variable \(x \) in (2) to \(y \) to improve readability.

We may simplify (3) to only contain first-order quantifiers. The left conjunctive term is equivalent to

\[
\forall x(P(x) \leftrightarrow \forall pq(\forall y(\neg P(y) \rightarrow q(y)) \land p(a) \rightarrow p(x)))
\]

or, equivalently,

\[
\forall x(P(x) \leftrightarrow \forall p(\exists q(\exists y(\neg P(y) \rightarrow q(y)) \land p(a) \rightarrow p(x))).
\]

We may choose \(q \) to be the whole universe, so the formula is simplified

\[
\forall x(P(x) \leftrightarrow \forall p(p(a) \rightarrow p(x))),
\]

or, more concisely,

\[
\forall x(P(x) \leftrightarrow x = a).
\]
Thus, (3) is equivalent to

\[\forall x (P(x) \leftrightarrow x = a) \land \\
\forall x (Q(x) \leftrightarrow \forall p q(\forall y (\neg P(y) \rightarrow q(y)) \land p(a) \rightarrow q(x))) \]

and equivalently,

\[\forall x (P(x) \leftrightarrow x = a) \land \forall x (Q(x) \leftrightarrow \forall q(\forall y (\neg P(y) \rightarrow q(y)) \rightarrow q(x))). \]

We notice the left conjunctive term allows us to further simplify the stability formula to

\[\forall x (P(x) \leftrightarrow x = a) \land \forall x (Q(x) \leftrightarrow \forall q(\forall y (y \neq a \rightarrow q(y)) \rightarrow q(x))), \]

which is equivalent to

\[\forall x (P(x) \leftrightarrow x = a) \land \forall x (Q(x) \leftrightarrow x \neq a). \quad (4) \]

3 The SM Operator

Before we may present the definition of the SM operator, we should first define some special second-order notation. If \(p \) and \(q \) are predicate constants of the same arity, then \(p \leq q \) stands for \(\forall x (p(x) \rightarrow q(x)) \), where \(x \) is a tuple of distinct object variables. If \(p \) and \(q \) are tuples of predicate constants, \((p_1, \ldots, p_n) \) and \((q_1, \ldots, q_n) \), then \((p \leq q) \) is shorthand for

\[(p_1 \leq q_1) \land \ldots \land (p_n \leq q_n) \]

and the formula \((p < q) \) is shorthand for

\[(p \leq q) \land \neg(q \leq p). \]

The SM operator, as introduced in \[Lifschitz, 2010\], is defined as

\[\Pi \land \neg \exists p ((p < P) \land \Pi^\nabla(p)). \quad (5) \]

Informally, we may say that (5) represents the minimal models satisfying \(\Pi \). The SM operator is limited to logic programs without implication in the bodies of rules. Although it itself a specialization of a more general definition \[?\], its simplicity is particularly convenient for the purpose of this paper.

Example Applying the SM operator to our (2) produces

\[\forall x (\neg P(x) \rightarrow Q(x)) \land P(a) \land \\
\neg \exists p q((p, q) < (P, Q)) \land \forall x (\neg P(x) \rightarrow q(x)) \land p(a)]. \]

The upper portion of this formula says \(P \) must contain the element \(a \) and \(Q \) must contain every element \(P \) lacks. The lower portion indicates the extents of \(P \) and \(Q \) are minimal. Clearly, this formula is equivalent to (4).
4 Equivalence of SF and SM

Theorem 1 For any non-disjunctive logic program Π, $SF[Π]$ is equivalent to $SM[Π]$.

Before seeing the proof of equivalence, it may help one to have an intuitive understanding of the proposition. When we say that, a set X is minimal subject to a certain condition, this can be understood in two ways. One is that the condition is not satisfied for any proper subset of X. The other is that each set satisfying the condition is a superset of X, or, in other words, that X is the intersection of all sets satisfying that condition.

Each of the formulas, $SM[Π]$ and $SF[Π]$, is a minimality condition: $SM[Π]$ of the first kind; $SF[Π]$ of the second. This theorem shows that for non-disjunctive programs, these two views of minimality are equivalences to each other.

4.1 Proof of Theorem 1

We begin with several necessary lemmas. We use the following notation throughout:

- $Π$ is a non-disjunctive logic program of the form specified in Section 1.
- P is the tuple of predicates appearing in $Π$.
- p, p' and p'' are tuples of distinct predicate variables corresponding to the members of P.
- x is a tuple of one or more object variables.
- t and u are tuples of one or more object constants.
- P is a member of P, p is a member of p, etc.
- F, G and H are arbitrary formulas without implication.

Lemma 1 If F is any formula not containing implication, then

$$(p \leq p') \land F^=\ (p) \rightarrow F^=\ (p')$$

is logically valid.

Proof of Lemma 1: By structural induction.

Case 1: $F = p_i(t)$: Assume the antecedent. Then $F^=\ (p)$ is $p_i(t)$. From $(p \leq p')$ and $p_i(t)$, we have $p_i'(t)$, which is equal to $F^=\ (p')$.

Case 2: $F = \bot, F = \top$, or $F = (t = u)$ Then $F^=\ (p) = F = F^=\ (p')$.

Case 3: $F = G \land H$, where G and H are arbitrary formulas not containing implication. By the inductive hypothesis, we have

$$(p \leq p') \land G^=\ (p) \rightarrow G^=\ (p')$$

(6)
and
\[(p \leq p') \land H^\circ(p) \rightarrow H^\circ(p'). \quad (7)\]

We also have
\[F^\circ(p) = G^\circ(p) \land H^\circ(p). \quad (8)\]

From our assumptions, (6), (7), and (8), we derive
\[G^\circ(p') \land H^\circ(p'), \]
which is equal to \(F^\circ(p').\)

Case 4: \(F = G \lor H,\) where \(G\) and \(H\) are arbitrary formulas not containing implication. Similar to the conjunctive case.

Case 5: \(F = \neg G,\) where \(G\) is an arbitrary formula not containing implication. Then \(F^\circ(p) = \neg G = F^\circ(p').\)

Lemma 2 Let \(D\) stand for
\[\bigwedge_{p \in \mathbf{p}} \forall x(p(x) \leftrightarrow p'(x) \land p''(x)), \quad (9)\]
where \(p, p'\) and \(p''\) are same-size tuples of distinct predicate variables. Then the formula
\[D \land \Pi^\circ(p') \land \Pi^\circ(p'') \rightarrow \Pi^\circ(p) \quad (10)\]
is logically valid.

Proof of Lemma 2: First, assume \(D.\) Thus, from (9), we may derive
\[(p \leq p') \quad (11)\]
and
\[(p \leq p''). \quad (12)\]

Next, assume
\[\Pi^\circ(p') \land \Pi^\circ(p'')\]
or, equivalently,
\[\bigwedge_{i=1}^{n} \tilde{\psi}(F^\circ_i(p') \rightarrow p'_i(t)) \land \bigwedge_{i=1}^{n} \tilde{\psi}(F^\circ_i(p'') \rightarrow p''_i(t)). \quad (13)\]

Similarly, we expand our goal, \(\Pi^\circ(p)\) as
\[\bigwedge_{i=1}^{n} \tilde{\psi}(F^\circ_i(p) \rightarrow p_i(t)). \quad (14)\]
For the \(i\)th term of (14), assume
\[F^\circ_i(p). \quad (15)\]
By Lemma 1, (11) and (15), \(F_i^u(p') \). Similarly, from (12) and (15), \(F_i^u(p'') \).
Thus from (13),
\[
p_i'(t) \land p_i''(t),
\]
or equivalently, by our definition of \(D_i \),
\[
p_i(t).
\]
Thus we have shown our goal, (14). ■

Lemma 3 \(\Pi \) entails
\[
\forall p(\Pi^c(p) \rightarrow (P \leq p)) \leftrightarrow \forall p(\Pi^c(p) \rightarrow \neg(p < P)).
\]

Proof of Lemma 3:
(\(\Rightarrow \)) Assume \((P \leq p) \). Then,
\[
\neg((p \leq P) \land \neg(P \leq p)),
\]
which is equivalent to
\[
\neg((p \leq P) \land \neg(P \leq p)),
\]
which is the definition of \(\neg(p < P) \).

(\(\Leftarrow \)) Assume \(\Pi \). Take \(p' \) such that it is the intersection of \(P \) and an arbitrary \(p \). That is, let \(p' \) be defined such that
\[
\bigwedge_{P \in P} \forall x(p'(x) \leftrightarrow P(x) \land p(x)).
\]
We assume the right-hand side of (17) and take \(p' \) as \(p \), giving
\[
\Pi^c(p') \rightarrow \neg(p' < P),
\]
which is equivalent to
\[
\Pi^c(p') \rightarrow \neg(p' \leq P) \lor (P \leq p'),
\]
and equivalently,
\[
\Pi^c(p') \rightarrow \neg\left(\bigwedge_{P \in P} \forall x(p(x) \land P(x) \rightarrow P(x))\right) \lor (P \leq p').
\]
Next, we notice that each of the implications within the left disjunctive term of (19) are trivially true, making the entire left disjunctive term universally false. Thus, (19) is equivalent to
\[
\Pi^c(p') \rightarrow (P \leq p'),
\]
and equivalently,
\[
\Pi^c(p') \rightarrow \left(\bigwedge_{P \in P} \forall x(P(x) \rightarrow P(x) \land p(x))\right),
\]
which may be simplified to

$$\Pi^\diamond (p') \rightarrow \left(\bigwedge_{p \in P} \forall x(P(x) \rightarrow p(x)) \right),$$

or simply,

$$\Pi^\diamond (p') \rightarrow (P \leq p). \quad (20)$$

Next, assume (18), \(\Pi^\diamond (P)\) and \(\Pi^\diamond (p)\). Recall that by definition of the diamond operator, \(\Pi^\diamond (P) = \Pi\). Then applying Lemma 2, with \(P\) as \(p'\), \(p\) as \(p''\) and \(p'\) as \(p\), gives

$$\Pi^\diamond (p'). \quad (21)$$

Finally, from (20) and (21),

\((P \leq p)\). \qed

Lemma 4 \(\Pi\) entails

$$\left(\bigwedge_{i=1}^{n} \forall x(P_i(x) \rightarrow \forall p(\Pi^\diamond (p) \rightarrow p_i(x))) \right) \leftrightarrow (\neg \exists p((p < P) \land \Pi^\diamond (p))). \quad (22)$$

Proof of Lemma 4:
Assume \(\Pi\). We begin by noting that the left hand side is equivalent to

$$\forall p \left(\bigwedge_{i=1}^{n} \forall x(P_i(x) \rightarrow (\Pi^\diamond (p) \rightarrow p_i(x))) \right),$$

which is equivalent to

$$\forall p \left(\bigwedge_{i=1}^{n} \forall x(\Pi^\diamond (p) \rightarrow (P_i(x) \rightarrow p_i(x))) \right),$$

which is also equivalent to

$$\forall p \left(\Pi^\diamond (p) \rightarrow \bigwedge_{i=1}^{n} \forall x(P_i(x) \rightarrow p_i(x)) \right). \quad (23)$$

At this point, we notice that the right side of the consequent is the definition of \((P_i \leq p_i)\), so we may rewrite (23) as

$$\forall p \left(\Pi^\diamond (p) \rightarrow \bigwedge_{i=1}^{n} (P_i \leq p_i) \right). \quad (24)$$

Similarly, we notice that the consequent of this sentence is the definition of \((P \leq p)\), thus (24) is equivalent to

$$\forall p(\Pi^\diamond (p) \rightarrow (P \leq p)). \quad (25)$$
From our original assumption, \(\Pi \), we notice that we apply Lemma 3 and rewrite (25) equivalently as
\[
\forall p (\Pi \diamond (p \rightarrow \neg p \leq P)).
\] (26)

From here, we rewrite implication as disjunction and apply De Morgan’s laws, thus (26) is equivalent to
\[
\forall p \neg ((p < P) \land \Pi \diamond (p)),
\]
which is equivalent to the right hand side of (22). ■

Lemma 5 The formula
\[
(SF[\Pi] \land \Pi \diamond (p) \land F) \rightarrow F \diamond (p).
\] (27)
is logically valid.

Proof of Lemma 5: By induction on \(F \). Assume \(\Pi \diamond (p) \), \(F \) and \(SF[\Pi] \). Recall from Section 1 that \(SF[\Pi] \) is defined as
\[
\bigwedge_{i=1}^{n} \forall x (\Pi \diamond (p) \rightarrow p_i(x)) \leftrightarrow P_i(x)).
\] (28)

Case 1: \(F = P(t) \). From \(SF[\Pi] \) and (27), taking \(x \) to be \(t \), we derive
\[
\forall p (\Pi \diamond (p) \rightarrow p(t)).
\]
From this sentence and the assumption \(\Pi \diamond (p) \), we derive \(p(t) \), which is \(F \diamond (p) \).

Case 2: \(F = \neg G \), where \(G \) is an implication-free formula. Then \(F = \neg G = F \diamond (p) \).

Case 3: \(F = \bot \), \(F = \top \), or \(F = (t = u) \). Then, just as in case 2, \(F \) will be equal to \(F \diamond (p) \).

Case 4: \(F = G \land H \), where both \(G \) and \(H \) are implication-free formulas. By the inductive hypothesis,
\[
(\Pi \diamond (p) \land G) \rightarrow G \diamond (p)
\] (29)
and
\[
(\Pi \diamond (p) \land H) \rightarrow H \diamond (p).
\] (30)
From (29) and (30), we derive
\[
(\Pi \diamond (p) \land G \land H) \rightarrow (G \diamond (p) \land H \diamond (p)),
\]
which is, of course, equal to
\[
(\Pi \diamond (p) \land F) \rightarrow F \diamond (p).
\] (31)

Thus from (31) and our assumptions, \(\Pi \diamond (p) \) and \(F \), we derive \(F \diamond (p) \).

Case 5: \(F = G \lor H \), where \(G \) and \(H \) do not contain implication. Similar to the conjunctive case, we may assume the inductive hypotheses, (29) and (30).

We now consider two cases: If \(G \), then from (29), we derive \(G \diamond (p) \), and consequently \(G \diamond (p) \lor H \diamond (p) \); if \(H \), then from (30), we derive \(H \diamond (p) \), and consequently \(G \diamond (p) \lor H \diamond (p) \). ■
Lemma 6 The formula

$$SF[Π] → Π$$

is logically valid.

Proof of Lemma 6: Assume $SF[Π]$, that is, (1). We wish to show $Π$ follows. To do this, we will show this for the jth rule of $Π$ in order to show it for all rules of $Π$. That is, we can rewrite our goal simply as $SM[Π]$ entails

$$\tilde{∀}(F_j → P_j(t)).$$

(32)

Now we also assume F_j and need to show $P_j(t)$ in order to show $Π$ is entailed.

Next, we assume $Π^p(p)$ for some arbitrary p. That is, in addition to our previous assumptions F_j and $SM[Π]$, we also assume

$$\bigwedge_{j=1}^{m} \tilde{∀}(F_j^p(p) → p_j(t)).$$

(33)

From these three assumptions, we apply Lemma 5 in order to derive $F_j^p(p)$. From this conclusion and (33), we conclude $p_j(t)$. That is, we have shown that the formula

$$(SM[Π] ∧ F_j) → ∀p(Π^p(p) → p_j(t))$$

(34)

is logically valid. From (1) right-to-left, we notice that the consequent of (34) is equivalent to simply $P_j(t)$. Thus we have shown the logical validity of

$$(SM[Π] ∧ F_j) → P_j(t),$$

or, equivalently,

$$SM[Π] → (F_j → P_j(t)).$$

Since we have shown this for the jth rule of $Π$, we have shown its correctness for all rules in $Π$. That is, we have shown

$$SM[Π] → \left(\bigwedge_{j=1}^{m} \tilde{∀}(F_j → P_j(t)) \right)$$

is logically valid, or, equivalently

$$SM[Π] → Π.$$ ■

Lemma 7 The formula

$$Π → \left(\bigwedge_{i=1}^{n} ∀x(∀p(Π^p(p) → p_i(x)) → P_i(x)) \right)$$

is logically valid.
Proof of Lemma 7: Assume \(\Pi \). We need to show the consequent,
\[
\bigwedge_{i=1}^{n} \forall x (\forall p (\Pi^\circ(p) \rightarrow p_i(x)) \rightarrow P_i(x)).
\]
Assume the antecedent,
\[
\forall p (\Pi^\circ(p) \rightarrow p_i(x)).
\]
If we then take \(p \) to be \(P \), we derive
\[
\Pi^\circ(P) \rightarrow P_i(x) \quad (35)
\]
However, \(\Pi^\circ(P) \) is equal to \(\Pi \). Thus \((35) \) is equal to
\[
\Pi \rightarrow P_i(x).
\]
Thus from our original assumption, \(\Pi \), we derive \(P_i(x) \). ■

5 Proof of Theorem 1

(\(\Leftarrow \)) By Lemma 6 and (1),
\[
\Pi, \quad (36)
\]
and from (1) right-to-left,
\[
\bigwedge_{i=1}^{n} \forall x (P_i(x) \rightarrow \forall p (\Pi^\circ(p) \rightarrow p_i(x))). \quad (37)
\]
Then by (36) and Lemma 4, we then know (37) is equivalent to (??), that is
\[
\neg \exists p ((p < P) \land \Pi^\circ(p)).
\]
From (36) and (??), we find (5).

(\(\Rightarrow \)) From (5), clearly (36) and (??). By Lemma 7 and (??),
\[
\forall x (\forall p (\Pi^\circ(p) \rightarrow p_i(x)) \rightarrow P_i(x)). \quad (38)
\]
By applying Lemma 4 to (36) and (??), we derive
\[
\bigwedge_{i=1}^{n} \forall x (\forall p (\Pi^\circ(p) \rightarrow p_i(x)) \leftarrow P_i(x)). \quad (39)
\]
From (38) and (39), (1). ■

6 Conclusion

We have presented a definition of stability formulas, a novel definition of stable model semantics for non-disjunctive programs. We have shown its equivalence to the \(SM \) operator, a known version of stable model semantics for limited programs. The structure of stability formulas is syntactically similar to program completion, making it excellent for use within a classroom setting.
References