Midterm 2 for CS301K Fall 2013

Answers

A. Provide counterexamples disproving the following propositions. (Explain why they are counterexamples). (5 points each).

1. The \leq relation on \mathbb{Z} is an equivalence relation

 The pair $(1, 2)$ is in the \leq relation because $1 \leq 2$. However, $(2, 1)$ is not in the \leq relation because $2 \not\leq 1$. This means that \leq is not symmetric, and if it is not symmetric, it is also not an equivalence relation.

2. If A, B, C, and D are sets, then $(A \cup C) \times (B \cup D) \subseteq (A \times B) \cup (C \times D)$

 Let $A = \{a\}$, $B = \emptyset$, $C = \emptyset$, $D = \{d\}$. Then $(A \cup C) \times (B \cup D) = (\{a\} \cup \emptyset) \times (\emptyset \cup \{d\}) = \{a\} \times \{d\} = \{(a, d)\}$. But $(A \times B) \cup (C \times D) = (\{a\} \times \emptyset) \cup (\emptyset \times \{d\}) = \emptyset \cup \emptyset = \emptyset$. Because $\{(a, d)\} \subseteq \emptyset$ is false, we have found a counterexample.

B. Enumerate every element of the following sets. (5 points each).

1. $\mathcal{P}(\{a\}) \times \mathcal{P}(\{b\}) = \\
 \{ (\emptyset, \emptyset), (\emptyset, \{b\}), (\{a\}, \emptyset), (\{a\}, \{b\}) \}$

2. Define relation R on $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ as $aRb \iff [a \equiv b \pmod{3}]$.
 Then $[1]_R = \\
 \{ 1, 4, 7 \}$
C. Prove the following theorems. (10 points each).

1. Define the relation \preceq on $\mathbb{R} \times \mathbb{R}$ as: $(a, b) \preceq (x, y) \leftrightarrow a \leq x \land b \leq y$.

 Theorem: \preceq is transitive. (Hint: take the fact that \leq is transitive as given)

 1. Assume $(a, b) \preceq (c, d) \land (c, d) \preceq (e, f)$ for $a, b, c, d, e, f \in \mathbb{R}$
 2. $a \leq c \land b \leq d \{\text{simplification, def. } \preceq: 1\}$
 3. $c \leq e \land d \leq f \{\text{simplification, def. } \preceq: 1\}$
 4. $a \leq e \land b \leq d \leq f \{\text{conjunction: 2,3}\}$
 5. $a \leq e \land b \leq f \{\leq \text{ is transitive}\}$
 6. $(a, b) \preceq (e, f) \{\text{Def. } \preceq\}$
 7. Therefore $(a, b) \preceq (c, d) \land (c, d) \preceq (e, f) \rightarrow (a, b) \preceq (e, f)$
 8. \preceq is transitive $\{\forall \text{ generalization, def. transitive}\}$
2. Theorem: If A and B are sets, then $A \cup (A^C \cap B) = A \cup B$

Proof:
1. Let $x \in A \cup (A^C \cap B)$
2. $\equiv x \in A \lor x \in A^C \cap B$ {Def. \cup}
3. $\equiv x \in A \lor (x \in A^C \land x \in B)$ {Def. \cap}
4. $\equiv x \in A \lor (x \notin A \land x \in B)$ {Def. complement}
5. $\equiv (x \in A \lor x \notin A) \land (x \in A \lor x \in B)$ {distribute \lor over \land}
6. $\equiv T \land (x \in A \lor x \in B)$ {Def. \lor negation}
7. $\equiv x \in A \lor x \in B$ {Def. \lor identity}
8. $\equiv x \in A \cup B$ {Def. \cup}
D. Decide whether or not the following proposition is true, and then either prove or disprove it. (10 points).

This problem depends on the definition of relation composition provided in the book (not in class). As a reminder, if \(R \) is a relation from \(A \) to \(B \), and \(S \) is a relation from \(B \) to \(C \), then \(S \circ R \) is a relation from \(A \) to \(C \) where

\[
S \circ R = \{(a, c) \in A \times C | \exists b \in B [(a, b) \in R \land (b, c) \in S]\}.
\]

Claim: Assume \(R \) is an equivalence relation on \(A \), and \(S \) is a partial order on \(A \). Then \(S \circ R \) is symmetric.

False, Counterexample:

Let \(A = \{1, 2\} \). Then \(R = i_A = \{(1, 1), (2, 2)\} \) is an equivalence relation on \(A \). Then define \(S = \leq_A = \{(1, 1), (1, 2), (2, 2)\} \), which is a partial order on \(A \). Then \(S \circ R = \leq_A \circ i_A = \leq_A = \{(1, 1), (1, 2), (2, 2)\} \), which is clearly not symmetric because it contains \((1, 2)\) but lacks \((2, 1)\).