A. Provide counterexamples disproving the following propositions. (Explain why they are counterexamples). (5 points each).

1. Define R as an equivalence relation on \mathbb{Z} where $aRb \iff |a| = |b|$. Then for all $x \in \mathbb{Z}$, the size (cardinality) of the equivalence class $[x]_R$ is 2.

2. $\forall x[P(x) \lor Q(x)] \equiv [\forall xP(x)] \lor [\forall xQ(x)]$

3. If R is a relation from A to B, and S is a relation from B to A, then the composition of the relations, $S \circ R$, is an equivalence relation.

B. Enumerate every element of the following sets. (5 points each).

1. $\mathcal{P}(\{a, b\}) \times \mathcal{P}(\emptyset) =$

2. (Recall $\mathbb{N} = \{0, 1, 2, \ldots\}$)
 $\{3^i | i \in \mathbb{N} \land i \leq 4\} =$
C. Prove the following theorems. (10 points each).

1. Theorem: Suppose R is a relation from A to B, and S is a relation from B to C, and T is a relation from C to D. Then $(T \circ S)\circ R \subseteq T \circ (S \circ R)$.
2. Theorem: If A and B are sets, then $(A \times B) \cap (A^C \times B) = \emptyset$.

D. Decide whether or not the following propositions are true, and then either prove or disprove them. (5 points each).

1. If R is a binary relation on A, and $R = R^{-1}$, then R is symmetric.

2. If R is a binary relation on A, and $R = R^{-1}$, then R is transitive.
Scratch Paper