
A Universal Construction for Wait-Free
Transaction Friendly Data Structures

Phong Chuong
Dept. of Computer Science

University of Toronto
Toronto, ON, Canada

chuongph@cs.utoronto.ca

Faith Ellen
Dept. of Computer Science

University of Toronto
Toronto, ON, Canada

faith@cs.utoronto.ca

Vijaya Ramachandran
Computer Science Dept.

University of Texas at Austin
Austin, TX, USA

vlr@cs.utexas.edu

ABSTRACT
Given the sequential implementation of any data structure,
we show how to obtain an efficient, wait-free implementa-
tion of that data structure shared by any fixed number of
processes using only shared registers and CAS objects. Our
universal construction is transaction friendly, allowing a pro-
cess to gracefully exit from an operation that it wanted to
perform, and it is cache-efficient in a multicore setting where
the processes run on cores that share a single cache. We also
present an optimized shared queue based on this method.

Categories and Subject Descriptors
E.1 [Data Structures]: Distributed data structures; Lists,
stacks, and queues

General Terms
Algorithms, Theory

Keywords
Universal construction, wait-free, abortable data structure,
transaction friendly, cache-efficiency

1. INTRODUCTION
In a recent CACM article, Maurice Herlihy [12] said, “For

the foreseeable future, concurrent data structures will lie at
the heart of multicore applications, and the larger our li-
brary of scalable concurrent data structures, the better we
can exploit the promise of multicore architectures”. One way
to obtain a large variety of provably correct concurrent data
structures is to have methods for automatically construct-
ing them from sequential implementations. These are called
universal constructions.

A universal construction is wait-free if every process can
complete its operation on the shared data structure within
a finite number of its own steps, no matter how other pro-
cesses are scheduled. It is non-blocking, a less stringent con-
dition, if the operation of some process is completed within

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’10, June 13–15, 2010, Thira, Santorini, Greece.
Copyright 2010 ACM 978-1-4503-0079-7/10/06 ...$10.00.

a finite number of steps. Non-blocking and wait-free uni-
versal constructions were first introduced by Herlihy [10],
who proved that p-consensus objects and registers are suffi-
cient to implement any sequentially specified data structure
in a shared-memory system with p or fewer processes. Since
then, a variety of other non-blocking and wait-free universal
constructions have been proposed. (See Section 2.)

A transaction is a collection of shared memory operations,
that either all fail (without changing the shared memory) or
all succeed, as an atomic operation. Failure may occur as a
result of a conflict between transactions, or because a process
that is performing the transaction decides not to complete
it. We call a universal construction transaction friendly if a
process can exit from (or ‘abort’) an uncompleted operation
on the shared data structure that it no longer wishes to per-
form. This might happen, for example, if a process decides
not to complete an operation on the shared data structure
because it observes too much contention.

If each process is responsible for performing its own oper-
ation, it is often easy for a process to exit from an operation
that it has not yet completed. In wait-free universal con-
structions, where processes may help one another complete
their operations, difficulties can arise. In particular, it is nec-
essary to ensure that there is no other process that is still
trying to help perform that operation and might eventually
succeed in doing so.

In this paper, we present the first wait-free universal con-
struction that is transaction friendly. It only performs read,
write, and compare&swap (CAS) on relatively small sin-
gle records, and hence can be implemented on existing ma-
chines. We represent the sequential data structure directly
and apply operations to it in-place. A feature of our imple-
mentation is that queries (i.e. operations that do not change
the sequential data structure) do not change our representa-
tion of the shared data structure. If a sequential data struc-
ture has size s and is shared by p processes, we use a total
of Θ(s + p) words of shared memory. If t is the worst case
time complexity to perform an operation on the sequential
data structure and w is the maximum number of different
words of memory accessed by an operation on the sequen-
tial data structure, then the worst case number of steps a
process takes to perform an operation on the shared data
structure is Θ(pt log w), of which Θ(pw) are shared memory
accesses.

When implemented on a multicore with p cores and a
shared cache, the cache complexity of our algorithm matches
the sequential cache bound Q for any sequence S of data
structure operations in the following sense. Suppose the

memory is organized into blocks and f is the worst-case
number of blocks read when performing a single operation.
If the shared cache can hold at least 4pf blocks, then the
cache complexity of our universal construction when exe-
cuting S remains O(Q). Here, each operation in S can be
invoked by an arbitrary process.

Like previous wait-free universal constructions, our uni-
versal method applies operations to the data structure one
at a time. For the special case of a wait-free queue, we have
an optimized implementation that allows a process to per-
form an enqueue concurrently with a process performing a
dequeue. It also allows multiple processes to perform de-
queue simultaneously if the queue is empty. Care is needed
to ensure no bad interactions arise between concurrent op-
erations.

The remainder of the paper begins with a description of
previous non-blocking and wait-free universal constructions.
Next, we present our universal construction and a sketch of
its correctness proof. A full proof of correctness appears in
[5, 6]. This is followed by an analysis of the caching perfor-
mance of our universal construction on a multicore machine.
Finally, we give a brief overview of our optimized implemen-
tation of a shared queue. We conclude with a discussion of
future directions.

2. RELATED WORK
A classical approach to construct concurrent data struc-

tures is to use mutual exclusion to ensure that only one
process accesses the data structure at a time. The problem
here is that if a process crashes while it is in the critical
section, further accesses to the data structure are blocked.

A more recent approach is to use software transactional
memory [8, 14, 15], which provides support for implementing
transactions. Each operation on a shared data structure can
be treated as a separate transaction. A transactional mem-
ory system ensures that successful transactions do not inter-
fere with one another, and hence are correct, even if they are
performed simultaneously. A process whose transaction has
failed may decide to continue to retry the transaction; how-
ever, it is possible that it never succeeds. Moreover, because
of their generality, transactional memory systems may incur
a lot of overhead as compared to a universal construction.

Herlihy’s original approach [10] was to represent the data
structure by a shared linked list of its states, as a sequence
of operations are performed. To perform an operation, a
process appends a record, containing the operation and its
inputs, to the end of the shared list. Processes use a p-
consensus, CAS, or LL/SC object stored in each record to
agree on the record that will follow it in the list. When a
record has been appended to the shared list, the sequence
number of the operation (i.e., the distance of the record from
the beginning of the list), the state of the data structure after
the operation has been applied, and the output of the op-
eration, are also stored in the record. For nondeterministic
operations, processes must also agree on the new state and
the output of the operation. To achieve wait-freedom, each
process i begins an operation by creating a record containing
the operation and announces it by storing a pointer to it in
location i of an announce array. This record is given prior-
ity to be the m’th record of the list whenever i = m mod p.
All processes help apply the operation in the last record of
the list before they try to append a new record to the list.
The paper also describes how a counter in each record and

pointers to the last record each process has accessed can en-
able a process to determine when the record will no longer
be accessed, and hence can be reused. This is important to
prevent the space used by the shared data structure from be-
coming unbounded, but increases the time overhead. In this
implementation, the worst case number of steps a process
takes to perform its operation on the shared data structure
is Θ(p2 + ps + pt), of which Θ(p2 + ps) are shared memory
accesses. The number of records used by this implementa-
tion is Θ(p3), each of which contains a copy of the entire
data structure (of size at most s), an O(log p)-bit counter,
and an unbounded sequence number.

Another wait-free universal construction [9, 11], also by
Herlihy, uses a CAS (or LL/SC) object root that points to
a record containing the current state of the data structure.
To apply an operation to the data structure, the process
makes a private copy, L, of the record, applies the operation
to L, and then tries to change root to point to L. Each
process has a finite collection of at most p records. When it
needs a new record into which to copy the data structure,
it selects one that is not being used by any other process.
To facilitate this, each record stores the number of processes
currently using it. Before using the current record, a process
must increment this count and then check that the record is
still current. After a process finishes using a record, it must
decrement its counter. In [11], wait-freedom is achieved by
operation combining: After announcing its operation, a pro-
cess looks through the announce array for uncompleted op-
erations and applies all of them to L, before trying to change
root to point to L. If it is unsuccessful, it does this entire
procedure again. Whether or not it is successful the second
time, its operation is guaranteed to have been applied to the
share data structure. Wait-freedom can also be achieved
by having a mod p counter in root [9]. The value of the
counter is the index of the process whose announced opera-
tion is to be given priority. It is incremented whenever the
pointer in root is changed. Both variants use Θ(p2) records,
each of size s + Θ(log p) and, in the worst case, a process
does Θ(p2 + ps + pt) shared memory accesses to perform its
operation. For large linked data structures, when perform-
ing an operation, it suffices to copy only those parts of the
data structure that are changed (plus, recursively, any parts
that point to them). However, because storage that a pro-
cess allocates may need to remain in the data structure, the
memory management is more complicated.

To improve efficiency for large objects, Anderson and Moir
[2] use an additional level of indirection. The data structure
is viewed as being stored in a large array, which is divided
into a fixed number of blocks and the LL/SC object root
points to an array of pointers, which point to these blocks.
When a process wants to write to a block, it makes a private
copy of that block, and writes to its copy. Subsequent reads
and writes of that block by the process are performed on
its private copy. When the operation is complete, the pro-
cess tries to change root to point to a new array containing
pointers to these private blocks and all of the unmodified
blocks, so that the private blocks become part of the array.
If there are b blocks and each operation in the sequential
implementation updates at most w′ blocks, then their con-
struction uses Θ(s + p2 + pb + pw′s/b) space and a process
performs Θ(pb + p2t + pw′s/b) shared memory accesses in
the worst case to perform its operation.

Barnes [4] describes a non-blocking universal construction

based on LL/SC that does not require copying large parts of
the shared data structure. Moreover, it allows different pro-
cesses to perform operations on different parts of the data
structure simultaneously. When a process wants to perform
an operation on the shared data structure, it copies the vari-
ables it needs to access into local memory, to create a cached
copy of the relevant parts of the data structure, and applies
the operation on its cached copy. Then the process tries
to lock all the variables in the shared data structure that
it has cached and, if successful, changes all of the variables
in the shared data structure that it changed locally. Fi-
nally, whether it is successful or not, the process releases all
of its locks. If it was unsuccessful, it starts its operation
over again. To ensure that some process will be success-
ful, all processes try to lock variables in the same order.
To prevent a process that has crashed from locking out all
other processes, a process that encounters a locked variable
will help the process j that locked it, by trying to lock the
rest of the variables that j cached and, if successful, updat-
ing those variables that have changed values. This requires
each process to write a list of the at most w variables in
its cache, together with their original and final values, into
shared memory. The total space used by this construction is
Θ(s + pw). In the worst case, a process requires Θ(t) steps
for each attempt it makes to perform its operation, includ-
ing Θ(w) shared memory accesses. However, because this
implementation is not wait-free, the number of attempts a
process makes to perform its operation is unbounded.

Afek, Dauber, and Touitou [1] present two wait-free uni-
versal constructions that are more efficient than Herlihy’s.
In their Group Update algorithm, active processes (i.e. those
that have operations they wish to perform) maintain a dy-
namic list of their identifiers stored at the root of a full
binary tree of height log p. Like [9, 11], there is a CAS
or LL/SC object that points to the shared data structure.
To perform an operation, a process announces it in an an-
nounce array and then tries to add itself into the list, while
also helping other processes. This takes Θ(min{p, k log k})
shared memory accesses, where k is the contention. After
its identifier has been inserted into the list, a process copies
the data structure to a new region of shared memory and
does operation combining, applying all of the uncompleted
operations of the processes on the dynamic list to the shared
data structure. Then it attempts to update the pointer to
the shared data structure to point to its updated version. If
it was unsuccessful and its operation was not applied, the
process repeats this set of steps a second time, after which its
operation is guaranteed to have been performed. Finally a
process removes itself from the dynamic list. The total space
used is Θ(ps+p2 log p) and the worst case number of shared
memory accesses performed by a process to perform its op-
eration is Θ(min{p, k log k}+ kt + s). Jayanti [13] observed
that the step complexity of inserting a process into the list
and removing a process from the list can be improved to
Θ(log p), but under the unrealistic assumption that a word
of memory can store p identifiers and be accessed in a single
step.

In Afek Dauber and Touitou’s Individual Update algo-
rithm, processes maintain a queue of active processes repre-
sented by a tree. After announcing an operation, a process
enters the queue and moves towards the root. When a pro-
cess reaches the root, its operation is applied to the data
structure. While moving to the root, a process helps at

most k − 1 other processes along the way to reach the root
and apply their operations to the shared data structure. De-
pending on how operations are applied to the data structure,
the worst-case step complexity of performing an operation
is either Θ(ks + kt) or Θ(kt log t) and requires either Θ(ps)
or Θ(s + pt) words of shared memory.

More recently, Fatourou and Kallimanis [7] improved the
Group Update algorithm, using two trees in a clever way,
instead of one, to obtain space complexity Θ(ps + p2) and
worst-case step complexity Θ(min{k, log p}+kt+s), includ-
ing Θ(k + s) shared memory operations. For large objects,
they combined this universal construction with Anderson
and Moir’s construction, to improve the time complexity
of Anderson and Moir’s construction, without increasing its
space complexity.

3. A UNIVERSAL CONSTRUCTION
In this section, we present a universal construction that

creates a wait-free, linearizable implementation of an object
from a deterministic sequential implementation.

We consider a system of p processes that communicate
through a shared memory containing registers (which sup-
port read and write) and CAS objects (which support CAS,
also known as compare&swap, and read), each of which is
large enough to hold a small amount of information, for
example pointers, names of operations, words from the se-
quential implementation, or arguments of operations, plus
a sequence number. In addition, each process has a private
local memory.

Section 3.1 describes algorithm Perform(opi, inputi), which
is executed by process i when it needs to perform an oper-
ation on the given data structure. This execution includes
a macro Help in which process i accesses the shared data
structure to perform either its own operation or the oper-
ation of another process. The details of Help are deferred
to section 3.2. Together, Perform and Help constitute our
universal construction.

3.1 Procedure Perform
A process i begins an operation by reading gate on line

P1 and announcing the operation in the CAS object A[i],
its element of the announce array A, on line P3.

The CAS object gate controls access to the stored repre-
sentation of the shared data structure. It has two fields, proc
and seq, which are initially − and 1, respectively. When
gate.proc = i, all processes help process i perform its an-
nounced operation on the shared representation. When this
operation has been completed, gate.proc is reset to − and
gate.seq is incremented, on line P21 or F3. Thus the op-
eration performed when gate.seq = k is the kth operation
applied to the shared data structure.

The announce array A is an array of CAS objects indexed
by process id, in which a process announces an operation it
wants to perform on the shared data structure. Each com-
ponent, A[i], has four fields: op, seq, flag and arg. The type
of the operation is stored in A[i].op. The value of gate.seq
read by process i immediately before announcing an opera-
tion is stored in A[i].seq. We show that each time process
i announces a new operation, seq is larger, so we can use
(i, A[i].seq) to identify this operation. The status of pro-
cess i’s current operation is stored in flag: done indicates
that process i has not yet announced an operation or the
current operation has been applied to the data structure;

active indicates that the current operation has not yet been
applied; and exit indicates that process i has requested that
the current operation not be performed, if it has not already
been assigned a position in the linearization. The input ar-
guments of the current operation are stored in A[i].arg, if
A[i].flag contains active or exit, and the output arguments
are stored there if A[i].flag = done. If there are a lot of
input or output arguments, A[i].arg can, instead, contain a
pointer to a list of arguments.

After announcing its operation, if process i sees, on line
P11, that gate = (−, k), then it helps to choose the process
whose operation will be performed next. It gives priority
to process k mod p as in [10], to ensure wait-freedom. In
macro ChooseNextOp, process i sees whether process k mod
p has an announced operation to be performed, by checking
whether A[k mod p].flag = active on line C3. If so, process
i will decide to nominate process k mod p. Otherwise, it
will check that its own operation has not been completed,
on lines C4-C5, and decide to nominate itself, on line C6.
Process i nominates process mi by performing a CAS on line
P13 that tries to change gate from (−, k) to (mi, k). It will
read gate on line P14 to find out which process was chosen.

To help perform process gi.proc’s announced operation,
process i begins by reading A[gi.proc] into ai, on line P16. It
first checks if ai.flag = done, on line P17, and, if so, does not
need to help this operation, since it has been completed. To
avoid an announced operation from being performed more
than once, process i checks whether ai.seq ≤ gi.seq on line
P17. If not, then gi contains an old value of gate. In
this case, the gi.seq

th operation in the linearization has
been completed and process i will not perform Help. If
ai.seq ≤ gi.seq and ai.flag 6= done, then process i will
execute Help on behalf of operation (gi.proc, ai.seq). After-
wards, on line P19 or P20, process i writes the outputs of the
operation into A[gi.proc].arg and changes A[gi.proc].flag to
done using a single CAS. Finally, process i tries to update
gate to (−, gi.seq+1) on line P21, so that the next operation
can be performed.

Whenever a process i wants to exit its announced opera-
tion, it changes A[i].flag to exit on line P6, so that other
processes do not choose this operation, even if i has priority
to be chosen. However, process i does not return with exited
immediately after setting A[i].flag to exit. The reason for
this is that some other processes may already be in the midst
of helping to perform this operation. Instead, after changing
A[i].flag to exit, process i executes the rest of the iteration.
We show that, by the time process i finishes the iteration,
gate.seq will have been incremented. Thus, when any pro-
cess tries to help perform a subsequent operation, it reads
A[i] after A[i].flag was set to exit. Since A[i].flag does not
become active until process i announces another operation
on line P3, the exited operation will not be performed.

3.2 Procedure Help
When a process i performs Help, it tries to apply the op-

eration (gi.proc, ai.seq) as the gi.seq
th operation in the lin-

earization. Help uses the caching mechanism in [4]: When a
process first accesses a variable from the shared data struc-
ture during an invocation of Help, it caches it. Subsequent
reads and writes of a cached variable are performed locally.
After the operation has been completed locally, the process
updates those records in the shared data structure whose
values should be changed.

Perform(opi, inputi) by process i:

P1. gi ← read gate

P2. ai ← (opi, gi.seq, active, inputi)

P3. A[i]← write ai

P4. while ai.flag = active do

P5. if process i should exit its operation then

P6. CAS(A[i], ai, (ai.op, ai.seq, exit, inputi))

P7. ai ← read A[i]

P8. if ai.flag = done then

P9. Finish()
end if

end if

P10. gi ← read gate

P11. if gi.proc = − then

P12. ChooseNextOp()

P13. CAS(gate, gi, (mi, gi.seq))

P14. gi ← read gate
end if

P15. if gi.proc 6= − then

P16. ai ← read A[gi.proc]

P17. if ai.flag 6= done and ai.seq ≤ gi.seq then

P18. Help()

P19. CAS(A[gi.proc], (ai.op, ai.seq, active, ai.arg),
(ai.op, ai.seq, done, outputi))

P20. CAS(A[gi.proc], (ai.op, ai.seq, exit, ai.arg),
(ai.op, ai.seq, done, outputi))

end if

P21. CAS(gate, gi, (−, gi.seq + 1))
end if

P22. ai ← read A[i]
end while

P23. if ai.flag = exit then return(exited) end if

P24. Finish()

Finish() by process i:

F1. gi ← read gate

F2. if gi.proc = i then

F3. CAS(gate, gi, (−, gi.seq + 1)) end if

F4. return(ai.arg)

ChooseNextOp() by process i:

C1. mi ← gi.seq mod p ∈ {0, . . . , p− 1}

C2. ai ← read A[mi]

C3. if ai.flag 6= active then

C4. ai ← read A[i]

C5. if ai.flag = done then Finish() end if

C6. mi ← i
end if

We represent each variable x in the sequential representa-
tion by a record, Rx, in the shared representation. A record
is a CAS object with four fields: val[0], val[1], toggle and
seq. The fields val[0] and val[1] have the same type as x
and the field toggle is a single bit which indicates whether
val[0] or val[1] is the current value of x. Whenever process
i writes to the shared record, Rx, representing variable x, it
stores the new value in Rx.val[1−Rx.toggle], complements
Rx.toggle, and sets Rx.seq to gi.seq. When a process i reads
Rx, it compares Rx.seq with gi.seq to determine which of
Rx.val[0] and Rx.val[1] to use. If Rx.seq < gi.seq, then it
uses Rx.val[Rx.toggle] to get the current value of x, since no
other process that is performing the operation has changed
Rx. If Rx.seq = gi.seq, then Rx has already been updated
for the operation, so process i uses Rx.val[1−Rx.toggle] to
get the previous value of x. If Rx.seq > gi.seq, then the
operation has already been completed. In this case, process
i can stop performing the operation.

Process i begins Help by resetting its local dictionary Di

on line H1. Each entry in this dictionary is a triple con-
taining the name of the variable (which serves as the key),
the contents of the corresponding record in the shared rep-
resentation of the data structure, and the current value of
this variable. The second field is used to perform a CAS
on the record if the value of the variable is changed by the
operation. When process i accesses a variable x in the sim-
ulation of the sequential implementation, it checks, on line
H20, to see if x is in the local dictionary. If x is not in the
local dictionary, then, on line H21, process i reads the corre-
sponding record, Rx, from the shared representation of the
data structure and, on line H24 or H25, adds an entry to
the dictionary for x. If the access is a read from x, then, on
line H27, process i uses the local value of x that is stored
in the dictionary. If the access is a write to x, then, on line
H28, process i updates the local value of x to the new value.
When process i uses an input in the simulation of the se-
quential implementation, then, on line H29, process i uses
the corresponding value in ai.arg. When process i produces
an output value, then, on line H30, it writes the value to the
corresponding location in outputi.

Help() by process i:

H1. Ri ← φ

H2. nli ← read nl

H3. if nli.seq > gi.seq then exit Help end if

H4. if nl.seq < gi.seq

H5. then nexti ← nli.ptr[nli.toggle]

H6. else nexti ← nli.ptr[1− nli.toggle]
end if
% Locally perform all the steps of operation ai.op
% with inputs ai.arg, reading the record associated
% with each variable from the shared object prior to
% its first access by that operation.

H7. for each access of a variable with name x in the code
for operation ai.op do

H8. if x is the name for a new variable in the code for
ai.op then

H9. ri ← read record pointed to by nexti

% if nexti points to the last record in newlist,
% try to append a new record to newlist.

H10. if ri = (−,−, 0, 0) then

H11. CAS(record pointed to by nexti, ri, (newi,−,0,0))

H12. ri ← read record pointed to by nexti

H13. if ri = (newi,−,0,0) then
% the record pointed to by newi was
% successfully appended to newlist

H14. get a new record from the memory manager

H15. let newi point to this record

H16. initialize this record to (−,−, 0, 0)
end if

end if

H17. if ri.seq > gi.seq then exit Help end if

H18. add (x, ri, 0) to Di

H19. nexti ← ri.val[0]
end if

H20. if there is no item with key x in Di do

H21. ri ← read record, Rx, associated with variable x

H22. if ri.seq > gi.seq then exit Help end if

H23. if ri.seq < gi.seq

H24. then add (x, ri, ri.val[ri.toggle]) to Di

H25. else add (x, ri, ri.val[1− ri.toggle]) to Di

end if
end if

H26. let (x, r, v) be the (unique) item with key x in Di

H27. to read from x, use the value v

H28. to write v′ to x, replace (x, r, v) by (x, r, v′) in Di

H29. for inputs, use ai.arg

H30. place outputs in outputi

end for
% write changed records to the shared object:

H31. for each (x, r, v) ∈ Di do

H32. if r.seq < gi.seq and r.val[r.toggle] 6= v then

H33. if r.toggle = 0

H34. then r′ ← (r.val[0], v, 1, gi.seq)

H35. else r′ ← (v, r.val[1], 0, gi.seq)
end if

H36. CAS(Rx, r, r′)
end if

end for
% update nl

H37. if nli.seq < gi.seq then

H38. if nli.toggle = 0

H39. then nl′i ← (nl′i.ptr[0], nexti, 1, gi.seq)

H40. else nl′i ← (nexti, nl′i.ptr[1], 0, gi.seq)
end if

H41. CAS(nl, nli, nl′i)
end if

After process i complete its simulation of the operation, on
line H31, it considers each entry (x, r, v) in the dictionary. If
the record has not already been updated by another process
performing the same operation (i.e., if r.seq < gi.seq) and
the value of x was changed during the simulation of the
operation (i.e., r.val[r.toggle] 6= v), on line H32, then process
i performs the CAS on line H36 to update Rx in the shared
data structure. Lines H33–H35 ensure that the value of
toggle is changed and the new value of v is put in the correct
field.

It remains to describe what happens during the simula-
tion of an operation when the sequential implementation

allocates a new variable, x. It would be problematic to have
each process that tries to perform this operation allocate a
different record for x in the shared data structure. To avoid
this, we maintain a nonempty shared list, newlist, of records
that can be allocated when the operation is applied. The
first field of each record in newlist, val[0], points to the next
record in the list. If r.val[0] = −, then r is the last record
in newlist. The shared variable in nl contains a pointer to
the first record in newlist. The first time a value is written
to a newly allocated record, it is written into val[1]. This
allows other processes performing the operation to find the
next element in newlist by following the pointer stored in
val[0] when that the test on line H17 is unsuccessful. If the
test is successful, then process i can infer that the operation
has already been completed and it can stop performing the
operation. When a process uses the last record in newlist
(i.e., if line H10 is successful), it immediately tries, on line
H11, to append a new record to follow it. Each process i has
one unallocated record, pointed to by newi, that it can use
for this purpose. If it successfully appends this record to the
end of newlist (i.e., if line H13 is successful), then it gets a
new record from the shared memory manager to replace it,
on line H14–H16.

All processes performing an operation use the jth record in
newlist for the jth new variable that is allocated during that
operation. Process i keeps a pointer, nexti, which points to
the record it should use for the next variable that needs
to be allocated during the simulation of the operation. On
lines H4–H6, nexti is initialized to the beginning of newlist.
To use the record for a newly allocated variable x, process
i associates the name x with this record by adding a new
entry with key x, a copy of the contents of the record to its
local dictionary and the initial value 0, on line H18. Then,
on line H19, it assigns nexti to the next element in newlist.
Subsequent accesses to x are performed on the local copy
in Di. At the end of the operation, nl is updated to point
to the first unused record in newlist, on lines H37–H41. If
the sequential implementation releases variables, the corre-
sponding records could be added to newlist, so it serves as
a free list.

A problem could arise if another process tries to perform
the operation after nl has been updated, because it would
use different records for the newly allocated variables. In this
case, although the operation has been completely applied to
the shared data structure, it is possible that the output of
the operation has not been stored in its announcement. To
avoid this problem, nl consists of four fields, ptr[0], ptr[1],
toggle and seq. The fields ptr[0] and ptr[1] are pointers
to records, toggle is a bit which indicates whether ptr[0]
or ptr[1] points to the beginning of newlist and seq con-
tains the value of gate.seq when nl was last updated on
line H41. Before performing the operation, process i checks
whether nli.seq > gi.seq on line H3. If so, then the opera-
tion has been completed and process i can stop performing
the operation. If not, process i checks, on line H4, whether
nli.seq = gi.seq to determine whether nl has been updated
for this operation and hence, which of ptr[0] or ptr[1] to use.

3.3 Correctness
We say that the shared data structure at a particular con-

figuration correctly represents a state of the sequential data
structure if for all variables x in the sequential data struc-
ture, Rx.val[Rx.toggle] is the value of x in that state.

For every execution, we linearize each operation announced
by process i if and when A[i].flag is changed to done be-
tween its announcement and when process i announces its
next operation. Suppose we apply each linearized operation
up to and including this one to the sequential data structure.
We prove that the output of this operation is the same in
both the shared implementation and the sequential imple-
mentation, and the shared data structure at the linearization
point of this operation correctly represents the state of the
sequential data structure after these operations have been
performed.

We also prove that if process i invokes Perform(opi, inputi),
it will return after executing at most p + 1 iterations of the
while loop and either:
process i returns on line F4 after A[i].flag is set to done, or
process i returns on line P23 after setting A[i].flag to exit
on line P6, and A[i].flag is not set to done between when
the operation was announced and process i announces its
next operation.

We first establish some basic properties of the shared vari-
ables that follow from observation of the code.

• When gate = (−, k), it can only change to (i, k) for
some i ∈ {0, . . . , p− 1}.

• When gate = (i, k), it can only change to (−, k + 1).

• When A[i].flag = active, it can only change to done
or exit.

• When A[i].flag = done, it can only change to active.

• A[i].flag can change to done only when gate.proc = i.

• A[i].flag can change to active only when process i per-
forms P3.

• A[i].seq ≤ gate.seq.

• Rx.seq ≤ gate.seq, for every variable x in the sequen-
tial implementation.

• nl.seq ≤ gate.seq.

Then the following lemma establishes key invariants needed
to prove correctness.

Lemma 1.

1. Whenever gate.proc changes from i to −, A[i].flag =
done.

2. After process i performs line P3:
(a) if it next returns on line P23, then gate.proc does
not change to i
(b) if it next returns on line F4, then gate.proc changes
to i exactly once, and
(c) between when process i next returns and when it
performs line P3 after that, gate.proc 6= i.

3. Between when A[i].flag changes to done and when pro-
cess i last performed line P3 prior to that, gate.proc
changes to i exactly once.

Consider any execution of our algorithm that ends in a
configuration in which gate.seq = k + 1. Then at least k
operations have been linearized. For any variable x, let v
be its value in the sequential implementation immediately

after the first k operations in this linearization have been
performed. Then Rx.val[Rx.toggle] = v, if Rx.seq < k + 1,
and Rx.val[1−Rx.toggle] = v, if Rx.seq = k + 1. Similarly,
either nl.ptr[nl.toggle] or nl.ptr[1− nl.toggle] points to the
first element in newlist, if nl.seq < k + 1 or nl.seq = k + 1,
respectively.

We prove that, after i’s operation has been announced in
A[i], gate.proc changes to i mod p within p + 1 iterations of
the while loop by process i. When that occurs, every process
executing the while loop will help process i to complete its
operation (if it has not yet been completed) by performing
Help and then will try to update A[i] so that A[i].flag will be
set to done and arg will contain the output of the operation.

We also show that if process i attempts to set A[i].flag
to exit on line P6, then it exits Perform within one iteration
of the loop on lines P4–P22: If the CAS on line P6 is un-
successful, then we prove that A[i].flag has been changed
to done and process i’s operation has been linearized. If the
CAS on line P6 is successful, then A[i].flag is changed to
exit and we prove that it does not change back to active un-
til process i next announces another operation. Hence, when
process i next performs line P22 at the end of the iteration,
A[i].flag 6= active and the test on line P4 is unsuccessful.

We prove that, immediately after process i performs Help
for an operation that has not yet been linearized, then outputi

contains the output of that operation applied to the sequen-
tial data structure. For every variable x, we show that:

–if x is allocated, then there is a unique record, Rx, that
corresponds to x in the shared data structure,
–if it is not changed during the sequential implementation

of the operation, then Rx remains unchanged, and
–if it is changed to v, then Rx.val[rx.toggle] = v.

In addition, we prove that nl.ptr[nl.toggle] points to an un-
allocated record.

3.4 Complexity
During each iteration, process i executes O(1) steps in ad-

dition to executing Help at most once. If every sequential
operation accesses at most w variables and the local dictio-
nary of each process is implemented using, for example, a
red-black tree, it takes O(log w) steps, in the worst case, to
cache a variable or access a cached variable. (This takes
O(1) expected time using a hash table with chaining.) If
every sequential operation takes time at most t, the worst
case number of steps a process takes to perform Help is
O(t log w), of which Θ(w) are shared memory accesses.

If process i does not want to exit its operation, then it
executes at most p+1 iteration of the loop on lines P4–P22.
Hence a process takes O(pt log w) steps during Perform. If
process i wants to exit its operation, then after it performs
line P5, it does not perform another complete iteration of
the loop and, hence, takes O(t log w) more steps before it
returns.

For each variable x in the sequential implementation, there
is exactly one record, Rx,that corresponds to x in the shared
representation. In addition, each process, i, has a location
A[i] in the announce array and has one unallocated record,
pointed to by newi. It follows that the resulting shared
implementation of the data structure uses s + O(p) shared
objects, where s is the size of the sequential data structure.

4. CACHING PERFORMANCE
Consider the execution of Perform on a sequence of r op-

erations of the shared data structure on a multicore with p
cores (each corresponding to a process), which share a cache
of size M arranged in blocks of size B. We assume LRU.
We will say that a caching complexity R(r,M, B) is well-
behaved if R(r,M, B) = Θ(R(r,Θ(M), B). (All commonly
known cache complexities are well-behaved.)

Lemma 2. Let the shared data structure bring in at most
Q(r,M, B) blocks into cache and incur at most f(r, M, B)
cache misses for any single operation in its sequential exe-
cution of a sequence S of r operations.

If M ≥ 4 · p · B · f(r, M, B), and Q and f are well-
behaved cache complexities, then the number of cache misses
incurred by any execution of Perform on the sequence S is
O(Q(r, M, B)).

As an example, a stack or queue implemented as a stan-
dard semi-infinite array has Q(r,M, B) = r/B, f(r, M, B) =
1, hence by the above lemma, the number of cache misses
remains O(r/B) when executed with Perform if M ≥ 4pB.
(Typically, we will have M ≫ p·B). Note that Q(r,M, B) =
Ω(r/B) for any queue or stack — consider a queue (the stack
is similar) with a sequence of r operations which alternate
between 2M enqueues and 2M dequeues. Thus this result
is optimal for stacks and queues in a strong sense.

Lemma 2 can be proved as follows. The announce array
A[1..p], the most recent value of gate, and the data read
for the last operation, which together require no more than
3f(r, M, B) blocks in cache (assuming seq and toggle are
in one word) will be in cache, as will data read for other
recent operations. Additionally, the cache may contain data
used in older operations, which are being accessed by slow
processes that have not yet read the more recent value of
gate. Even if all but one process is executing slowly, there is
at least M ′ = M − p− 3pBf(r,M, B) space available in the
cache for the shared records accessed by recent operations.
We have M ′ = Θ(M) since M ≥ 4pBf(r, M, B).

The main additional source for cache misses occurs with
a process that slows down considerably. Consider a slow
process i. It may incur additional O(f(r, M ′, B)) cache
misses for its current operation opi if the data is so old
that it has been evicted from the cache. But if the data is
this old, then at least M ′/B blocks of data were brought
into cache since the time when opi was executed by the
fast processes. Further, process i will complete its exe-
cution of opi with at most 3f(r, M ′, B) cache misses, and
then will read the current value of gate. Hence, process i
will incur this penalty of 3f(r, M ′, B) cache misses at most
Q(r,M ′, B)/(M ′/B) times. Hence the total number of ad-
ditional blocks that could be read because of slow processes

(across all p processes) is O
“

p · f(r, M ′, B) · B·Q(r,M′,B)
M′

”

.

Since p = O(M
Bf(r,M,B)

) by assumption, this is O(Q(r, M, B)).

The caching performance looks less promising at the pri-
vate cache at each core: If process i performs ni operations,
it could incur Θ(p ·ni) cache misses in the worst case, in ad-
dition to the cost of reading in its private copy of the data
structure values. This could occur if for each operation, pro-
cess i needs to cycle through p− 1 iterations of helping, and
needs to read in an updated value from array A each time.
It is unclear how one can improve the caching performance

of private caches, and determining if this is possible is left
as an open question.

5. TRANSACTION FRIENDLY QUEUE
We have adapted Perform to obtain a refined version of

a wait-free transaction friendly queue, implemented in the
standard way as a semi-infinite array. In a queue, enqueues
and dequeues have no interaction, except possibly when the
queue is empty. Our queue allows an enqueue (op = E)
and a dequeue (op = D) to occur concurrently, and while
the queue is empty, all dequeues return within a constant
number of steps with ⊥ (to denote an empty queue).

We use Perform-Enq for enqueues and Perform-Deq for
dequeues, with separate gates egate and dgate. At qui-
escence (i.e. when there are no enqueues or dequeues in
progress), their sequence numbers give the locations of the
tail and head of the queue respectively. EHelp is the Help
routine for Perform-Enq and and DHelp for Perform-Deq.
At each location of the queue Q[1..] is a pair (val[0], val[1]),
which starts with value (−,−). When a value v is enqueued
at Q[i], its entry is updated to (v,−), and when this value is
dequeued from Q[i], it is updated to (v, v). No further up-
dates to this location can occur, hence we do not need the
toggle bit. Since position i in the queue is also the current
sequence number being used for gate (dgate or egate), we
do not need the sequence number field either.

The pseudocode is in the appendix, where lines numbers
with prefix P refer to the lines in our universal construc-
tion. We change ChooseNextOp slightly since, in addition
to needing ai.flag to be active in order to determine if the
operation should be performed, we also need to check if the
operation is E when executing Perform-Enq, and D when
executing Perform-Deq. Perform-Enq is the same as Per-
form except that gate is now egate, and Help is replaced by
the two-line EHelp. Perform-Deq has a few changes from
Perform, most notably to handle the case of dequeue when
an empty queue is detected. As seen in the pseudocode in
the appendix, this is handled using a mechanism similar to
that used to handle an exit in the universal construction.
We use a flag Xi to denote that an empty queue has been
detected by process i, and then we use the method used ear-
lier to handle exit to now handle both of these cases, and
use the flag Xi to return the correct value (exit or ⊥). The
other main difference from Perform is that when the queue
is empty, no dequeue can occur and hence there is no call
to DHelp, nor should there be a change to dgate during this
time (in contrast to the handling of exit). The correctness
follows from the fact that if process i returns with ⊥, then
after Xi is set to True and A[i].flag is set to exit, either the
queue is verified to be empty, or dgate.seq has been incre-
mented from the value it had when A[i].flag was set to exit.
Hence, if A[i].flag has not yet been set to done, any process
that tries to help with this dequeue request of process i will
find A[i].flag to be exit, and hence will not assign process
i to dgate.proc in ChooseNextOp.

The linearization point for an enqueue operation is when
line X2 is executed, and for a dequeue when line Y2 is ex-
ecuted. This is in contrast to the universal construction,
where the linearization point is when A[i].flag is set to done.
It is readily verified that the corresponding statement to
lines X2 and Y2 in the universal construction (namely the
last statement in Help) is a valid linearization point there.
For our queue, it is important to linearize at these two points

rather than when A[i].flag is set to done, due to our support
of concurrent execution of enqueues and dequeues.

6. DISCUSSION
In this paper, we have described a universal construc-

tion that implements any given deterministic sequential data
structure as a transaction friendly, wait-free data structure
shared by any fixed number of processes. The method is
efficient and uses the shared cache efficiently in a multicore
implementation. We have also briefly described a shared
queue based on this universal construction that appears to
be quite practical. In the interests of presenting a construc-
tion that is easier to understand, we did not include some
natural refinements. Instead, we discuss them briefly here.

Our universal construction uses CAS objects that contain
a small, constant number of fields. For example, a record
Rx in the shared data structure is a CAS object that con-
tains two values from the sequential data structure, a toggle
bit, and a sequence number. This can be avoided using in-
direction: Instead, each CAS object could contain a single
pointer that points to a record of registers. The resulting
implementation would be slower and a mechanism for man-
aging the allocation and deallocation of these records, such
as a separate free list for each process, is needed.

Randomized operations can be supported in our univer-
sal construction by using a shared array, S, of CAS objects
that allow the processes to agree on all of the random choices
made while applying the operation: Each of these CAS ob-
jects holds a random choice, together with the current value
of gate. When process i wants to make its k’th random
choice during the operation, it reads S[k]. If the sequence
number stored there is greater than gi, then the operation
has already been completed and the process can stop help-
ing it. If it is equal to gi, process i uses the random choice
recorded in S[k]. If it is less than gi, process i makes a local
random choice, which it tries to record, together with gi, by
performing a CAS on S[k]. Then it reads S[k] again and
uses the random choice recorded there. Note that the array
S is reused for each subsequent operation.

It is necessary to assume a weak adversary, which is not
aware of the local random choice of a process until it next
performs a shared memory operation. A strong adversary
could bias the outcome of a random choice by seeing the local
random choices of a number of processes and then scheduling
the process whose choice it likes best. In fact, it is impossible
to have a wait-free implementation of a fair coin against a
strong adversary [3].

As presented, our universal construction will not perform
an operation announced by process i if process i sets A[i].flag
to exit before it is chosen or given priority to be the next op-
eration. This is useful when process i has waiting too long to
perform its operation, because the operation will be termi-
nated, either successfully or unsuccessfully, without undue
delay. For more general situations, such as when a process
detects a problem during the execution or detects a conflict
with a concurrent operation, it would be better if the op-
eration exits even after it has been partially applied to the
shared data structure. This can be accomplished by hav-
ing a process undo all the changes the operation has made
to the shared data structure if it sees that the operation is
supposed to exit. Specifically, P20 is replaced by lines U1
to U15.

U1. a′

i ← read A[gi.proc]

U2. if a′

i.flag = exit and a′

i.seq = ai.seq

U3. then for each (x, r, v) ∈ Di do

U4. r′ ← read Rx

U5. if r′.seq = gi.seq then

U6. if r.seq < gi.seq

U7. then old← r.val[r.toggle]

U8. else old← r.val[1− r.toggle]
end if

U9. CAS(Rx, r′, (old, old, 0, gi.seq))
end for

U10. nl′i ← read nl

U11. if nl′i.seq = gi.seq then

U12. if nli.seq < gi.seq

U13. then old← nli.val[nli.toggle]

U14. else old← nli.val[1− nli.toggle]
end if

U15. CAS(nl, nl′i, (old, old, 0, gi.seq))
end if

end if

When process i performs this code, it first check whether
the operation it just helped is supposed to exit on lines U1–
U2. For each variable x whose record, Rx, was changed by
the operation and has not been changed by a later opera-
tion (i.e., the test on line U5 was successful), the value of
x prior to the operation is computed on lines U6–U8 and
put into both Rx.val[0] and Rx.val[1] on line U9. Rx.seq is
also set to gi.seq, so that a slow process still performing the
operation will not modify this location. Note that process
i’s local dictionary Di still contains all the records that are
accessed during the operation. Correctness follows from the
observation that any record Rx can change at most twice
while gate.seq has the same value. Similarly, nl is restored
to its old value on lines U10–U15.

Currently, in Perform, a process executes lines P10–P22
after announcing that its operation should exit. We should
remove line P23 and add return(exited) after lines P8–P9, so
that process i returns immediately after successfully setting
A[i].flag = exit. Furthermore, instead of allowing a process
to exit an operation only on lines P5–P9 at the beginning
of an iteration of the while loop on lines P4–P22, lines P5–
P9 could be put anywhere or lines P6–P9 could be executed
in response to an interrupt indicating that the announced
operation of process i should exit.

There are other refinements that can improve efficiency of
Perform. For instance, in our current method, a process i
that wants to exit and finds that its operation has not yet
completed, executes one further iteration of ChooseNextOp
and Help before returning. It is possible to avoid this addi-
tional iteration except when the values read for gate.seq in
lines P10 and P14 are congruent to i mod p; otherwise the
process can exit immediately. Also, at the end of Help, we
could have a pointer as a field in nl to the output needed by
the operation being executed so that other (later) processes
helping with the same operation do not need to execute the
operation in order to determine the output.

It should be possible to avoid using sequence numbers,
perhaps with standard techniques such as bounded times-
tamps, handshaking, or using LL/SC instead of CAS.

Currently our universal construction executes operations
one at a time. We are currently trying to find ways gener-
alize it to allow different operations to be performed con-
currently on disjoint parts of the shared structure, without
sacrificing correctness or wait-freedom. One approach we
are considering is to have a lock, owned by an operation, as-
sociated with each record in the shared data structure, as in
[4], but to give priority to operations in a way that ensures
wait-freedom.

Acknowledgments. This work was supported by the Nat-
ural Science and Engineering Research Council of Canada
and NSF grants CCF-0850775 and CCF-0830737.

7. REFERENCES
[1] Y. Afek, D. Dauber, and D. Touitou. Wait-free made

fast. In Proc. ACM SPAA, pages 538–547, 1995.

[2] J. Anderson and M. Moir. Universal constructions for
large objects. IEEE Trans. Parallel Dist. Syst.,
10(12):1317–1332, 1999.

[3] J. Aspnes and M. Herlihy. Fast randomized consensus
using shared memory. J. Algorithms, 11(3):441–461,
1990.

[4] G. Barnes. A method for implementing lock-free
shared-data structures. In Proc. ACM SPAA, pages
261–270, 1993.

[5] P. Chuong. A wait-free abortable universal
construction. Master’s thesis, University of Toronto,
2010.

[6] P. Chuong, F. Ellen, and V. Ramachandran. A
universal construction for wait-free transaction
friendly data structures. Manuscript, 2010.

[7] P. Fatourou and N. Kallimanis. The redblue adaptive
universal construction. In Proc. DISC, volume 5805 of
LNCS, pages 127–141, 2009.

[8] K. Fraser and T. L. Harris. Concurrent programming
without locks. ACM Trans. Comput. Syst., 25(2),
2007.

[9] M. Herlihy. A methodology for implementing highly
concurrent data structures. In Proc ACM PPoPP,
pages 197–206, 1990.

[10] M. Herlihy. Wait-free synchronization. ACM Trans.
Program. Lang. Syst., 13(1):124–149, 1991.

[11] M. Herlihy. A methodology for implementing highly
concurrent data objects. ACM Trans. Program. Lang.
Syst., 15(5):745–770, November 1993.

[12] M. Herlihy. Technical perspective - highly concurrent
data structures. Commun. ACM, 52(5):99, 2009.

[13] P. Jayanti. A time complexity lower bound for
randomized implementations of some shared objects.
In Proc. ACM PODC, pages 201–210, 1998.

[14] V. J. Marathe and M. Moir. Toward high performance
nonblocking software transactional memory. In Proc.
ACM PPoPP, pages 227–236, 2008.

[15] N. Shavit and D. Touitou. Software transactional
memory. Distributed Computing, 10(2):99–116, 1997.

Perform-Enq(E, vi) by process i:

P1. gi ← read egate

P2. ai ← (E, gi.seq, active, vi)

P3. A[i]← write ai

P4. while ai.flag = active do

P5. if process i should exit its operation then

P6. CAS(A[i], ai, (ai.op, ai.seq, exit, vi))

P7. ai ← read A[i]

P8. if ai.flag = done then

P9. Finish()

end if
end if

P10. gi ← read egate

P11. if gi.proc = − then

P12. ChooseNextOp()

P13. CAS(egate, gi, (mi, gi.seq))

P14. gi ← read egate

end if

P15. if gi.proc 6= − then

P16. ai ← read A[gi.proc]

P17. if ai.flag 6= done and ai.seq ≤ gi.seq then

P18. EHelp()

P19. CAS(A[gi.proc], (ai.op, ai.seq, active, ai.arg),
(ai.op, ai.seq, done, outputi))

P20. CAS(A[gi.proc], (ai.op, ai.seq, exit, ai.arg),
(ai.op, ai.seq, done, outputi))

end if

P21. CAS(egate, gi, (−, gi.seq + 1))

end if

P22. ai ← read A[i]

end while

P23. if ai.flag = exit then return(exited) end if

P24. Finish()

Finish() by process i:

Lines F1 to F4 as in the universal construction with:
gate = egate when called from Perform-Enq, and
gate = dgate when called from Perform-Deq.

ChooseNextOp() by process i:

Lines C1 to C6 as in the universal construction with line
C3 replaced by:
In Perform-Enq: ‘if ai.flag 6= active or ai.op 6= E’
In Perform-Deq: ‘if ai.flag 6= active or ai.op 6= D’

EHelp() by process i:

X1. outputi ← −

X2. CAS(Q[gi.seq], (−,−), (ai.arg,−))

Perform-Deq(D,−) by process i:

P1. gi ← read dgate

D1. Xi ← False

P2. ai ← (D, gi.seq, active,−)

P3. A[i]← write ai

P4. while ai.flag = active do

D2. gi ← read dgate

D3. qi ← read Q[gi.seq]

D4. if qi = (−,−) then Xi ← True

D5. [P5]
if (process i should exit) or (Xi) then

P6. CAS(A[i], ai, (ai.op, ai.seq, exit,−))

P7. ai ← read A[i]

P8. if ai.flag = done then

P9. Finish()

end if
end if

P10. gi ← read dgate

D6. qi ← read Q[gi.seq]

D7. if qi 6= (−,−) then

P11. if gi.proc = − then

P12. ChooseNextOp()

P13. CAS(dgate, gi, (mi, gi.seq))

P14. gi ← read dgate

end if

P15. if gi.proc 6= − then

P16. ai ← read A[gi.proc]

P17. if ai.flag 6= done and ai.seq ≤ gi.seq then

P18. DHelp()

P19. CAS(A[gi.proc], (ai.op, ai.seq, active, ai.arg),
(D, ai.seq, done, outputi))

P20. CAS(A[gi.proc], (ai.op, ai.seq, exit, ai.arg),
(ai.op, ai.seq, done, outputi))

end if

P21. CAS(dgate, gi, (−, gi.seq + 1))

end if

end if

P22. ai ← read A[i]

end while

D8. [P23a] if ai.flag = exit and Xi = True then
return(⊥) end if

D9. [P23b] if ai.flag = exit and Xi = False then
return(exited) end if

P24. Finish()

DHelp() by process i:

Y1. qi ← Q[gi.seq]

Y2. outputi ← qi.val[0]

Y3. CAS(Q[gi.seq], qi, (outputi, outputi))

