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Abstract
Color segmentation is a challenging subtask in computer vi-
sion. Most popular approaches are computationally expensi
involve an extensive off-line training phase and/or relyamsta-
tionary camera. This paper presents an approach for calor-le
ing on-board a legged robot with limited computational and
memory resources. A key defining feature of the approach is
that it works without any labeled training data. Rathenréitrts
autonomously from a color-coded model of its environment.
The process is fully implemented, completely autonomoud, a
provides high degree of segmentation accuracy.

Introduction

Computer vision is a major area of research with application
robotics and artificial intelligence. One of the principabgasks in
vision is that ofcolor segmentatiormapping each pixel in a cam-
era image to a color label. Though significant advances hega b
made in this field (Comaniciu & Meer 2002; Sumengen, Manju-
nath, & Kenney 2003), most of the algorithms are computatign
expensive and/or involve a time consuming off-line prepesing
phase. In addition, segmentation is typically quite séresip il-
lumination variations: a change in illumination causes alinear
shift in the mapping which could necessitate a repetitiothefen-
tire training phase.

This paper presents an efficient online algorithm for cokg-s
mentation in task-oriented scenarios with limited compateal re-
sources. Autonomous mobile robots operating in contradied-
ronments represent one such scenario. A key defining feafure
the algorithm is that it works without any labeled trainingtal
Rather it trains autonomously from a color-coded modeléit-
vironment.

¢ Limited computational and memory resources with all pro-

cessing being performed on-board the robot.

¢ Rapid motion of the limited-field-of-view camera with the

associated noise and image distortions.
Note in particular that there iso labeled training data or apriori
bias regarding the labels of points in color space. This ipes/
for robustness to different lighting conditions and evearades of
entire colors (e.g. repainting all red objects as blue and versa)
without any disruption to the robot.

Our goal is to generate a reliable mapping from the above in-
puts to the outputs, while operating within the constraimgosed
by the test platform. In this paper, we describe an approach t
autonomously generate such a color map in real-time. The- alg
rithmis fully implemented and tested using the SONY Aibajed
robots (Sony 2004) in a pre-existing task environment.

The remainder of the paper is organized as follows. We first fo
mally specify our problem and describe the test domain. Tiven
describe the overall algorithm and the specific instamtiin our
problem domain. The experimental setup and results are e
in the subsequent sections. We conclude with a brief degmipf
related work and our conclusions.

Problem Specification

In this section we formally describe the problem of genamt
color map for the robot. We also elaborate on our specifiqaiest
form and its constraints.

To be able to recognize objects and operate in a color-coded
world, a robot generally needs to recognize a certain discnem-
ber (N) of colors (@ € [0,N — 1]). A complete mapping identifies a
color label for each possible point in the color space (Glazzé&
Woods 2002) under consideration:

The problem of color segmentation as addressed here can be

characterized by the following set of inputs, outputs and-co
straints:
1. Inputs:

e A color-coded model of the world that the robot inhabits.
The model contains a representation of the size, shape, po-
sition, and colors of all objects of interest.

e A stream of limited-field-of-view images with noise and dis-
tortion as a result of motion of the camera and/or robot. The
images present a view of treructuredworld with many
useful objects, but also many unpredictable elements.

e Theinitial position of the robot and its joint angles ovend,
particularly those specifying the camera motion.

2. Output:

¢ A Color Mapthat assigns aolor labelto each point in the

input color space.
3. Constraints:
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whereC;,C,,C3 are the three color channels (e.g. RGB or YCbCr),
with the corresponding values ranging from @55.

For representing the colors, we use a Three-Dimensional (3D
Gaussian model with the assumption of mutually indepencigat
channels: a 3D Gaussian was observed to reasonably aptexim
actual color distributions (except for some edge effecie in-
dependence assumption implies that there is no correlatimng
the values along the three color channels for any given ctior
practice, the independence assumption does not hold ggrfde-
pending on the color space under consideration. For exanmple
our lab, the correlation coefficients between @gandCr color
channels in theér ChCr color space ar@cper = —0.71,—0.67 for
orange and yellow respectively. Nonetheless, the indeperedas-
sumption closely approximates reality and greatly simgsgifihe
calculations — computationally expensive operations agln-
verting a covariance matrix need not be performed.
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Each colomw € [0,N — 1] is then represented by the density dis-
tribution:
1
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wherec € [Gi,...Cinad represents the value at a pixel along a color
channelC; while pc; andag; represent the corresponding means
and variances.

Though more complex representations (of color distrimg)o
have been used in the literature, the Gaussian model hadviha-a
tage that the means and variances of the distributions arertly
statistics that need to be collected and stored for eachr twdbis
to be learnt. This feature makes the learning process fadeasi-
ble to execute on the robot. The next section presents thaitea
setup and the actual learning process that the robot gamsghito
learn the color map. The remainder of this section elabsiate¢he
robot and the experimental testbed.

The SONY Aibo,ERS-7 is a four legged robot whose primary
sensor is a CMOS camera located at the tip of its nose, witlda fie
of-view of 56.9° (hor) and 4%2° (ver), providing the robot with
a limited view of its environment. The images are capturethe
YCbCrformat at 3¢z with an image resolution of 208 160 pix-
els. The robot has 20 degrees-of-freedom (dof), three ih edc
its four legs, three in its head, and a total of five in its taibuth,
and ears. It also has noisy touch sensors, IR sensors, ang-a wi
less LAN card for inter-robot communication. The camer&ger
around a lot due to the legged (as opposed to wheeled) logmmot
modality, and images have a relatively low resolution ansispses
common defects such as noise and distortion.

The RoboCup Legged League is a research initiative which cur
rently has teams of four robots playing a competitive gamsoof
cer on an indoor field of size: 3mx 4.5m (see Figure 1).

Figure 1: An Image of the Aibo and the field.

On the robot, visual processing occurs in two stages: c@gr s
mentation and object recognition (et al. 2004). In the affdtul
training phase, we train a color map that maps a space 0k128
128x 128 possible pixel valuégto one of the 9 different colors
that appear in its environment (pink, yellow, blue, orangd, dark
blue, white, green, and black). The color map is then usedde s
ment the images and construct connected constant-coldobd b
out of the segmented images. The blobs are used to deteal usef
objects (e.g. markers, the ball, and opponents).

lwe use half the normal resolution of 0-255 along each dinoensi
reduce memory requirements

The robot uses the markers to localize itself on the field and c
ordinates with its team members to score goals on the opponen
All processing, for vision, localization, locomotion, armdtion-
selection, is performed on board the robots, using a 576Mbz p
cessor. Currently, games are played under constant anshadzly
uniform lighting conditions but the goal is to enable theotsbto
play under varying illumination conditiorfsThis goal puts added
emphasis on the ability to learn and adapt the color map ima ve
short period of time.

A variety of previous approaches have been implementeckin th
RoboCup domain to generate the color map (seaetated work
section at the end of the paper). But, almost all of them wwol
an elaborate training process wherein the color map is geeter
by hand-labeling severak(20— 30) images over a period of at
least an hour. This process leads to a long setup time bdiere t
games can begin. This paper presents a novel approach #igeen
the robot to autonomously learn the entire color map, ushmg t
inherent structure of the environment and about seven image
less than five minutes. The segmentation accuracy is cotvlpara
to that obtained by the color map generated by the handutapel
process.

Learning Setup

In this section we describe the task that the robot execotasi
tonomously learn the color distributions. Our learning hreadsm
is summarized in Algorithm 1. Specific implementation detare
explained below.

Algorithm 1 General Color Learning

Require: Starting Pose Known, Model of the robot’s world.
Require: Emptycolor map.
Require: Array of poses for learning colorBpse.
Require: Array of objects, described as shapes, from which the
colors need to be learr@b jectg].
Require: Ability to move to a target pose.
1: i =0,N = MaxColors
2: Timey=CurrTime
3: whilei < N andCurrTime— Time; < Timenaxdo

4:  Motion= RequiredMotionPosei] )
5. PerformMotion {Monitored using visual inpgt
6: if LearnGaussParam8plordi]) then
7 LearnMeanand Varianceof color from candidate image
pixels
8: UpdateColorMap()
9: if Valid( Colorgi]) then
10: RemoveFromMapColordi] )
11: end if
12:  endif
13: i=i+1
14: end while

15: Write out the color statistics and the color map.

The algorithm can be described as follows: The robot stéfregt o
a known position with a known model of its world. It has noiialit
color information, i.e. the means and variances of the sdimibe
learnt are initialized to zero and the images are all segecdatack
It also has three lists: the list of colors to be lea@olors), a list of
corresponding positions that are appropriate to learnetivotors
(Pos9, and a list of corresponding objects, defined as shapets, tha
can be used to learn the colors. Using a navigation functes (
quiredMotion()), the robot determines the motion requiiéeny,

2The stated goal of RoboCup is to create a team of humanoidsobo
that can beat the human soccer champions by the year 2050 e, a r
outdoor soccer field (Kitanet al. 1998)



to place it in a position corresponding to the first entr{Pase and
executes the motion command. Since the motion is noisypthatr
monitors the motion to the target position by searching foauadi-
date blob suitable for learning the desired color. The digbape
definition — the corresponding entry in téjectsarray — leads to
a set of constraints (heuristtandidacy tes)sthat are used to se-
lect the candidate blob. This typically corresponds to ajeahin
the environment that has the color the robot is currentlgresgted
in learning. The robot stops when either a suitable blob iméb
or it thinks it has reached its target position. Further etz the
candidacy testsan be found in our team’s technical report (et al.
2004).

Once in position, the robot executes the functi@marnGauss-
Params()to learn the color. If a suitable candidate bloluaknown
color (blackin our case) exists, each pixel of the blob is examined.
If the pixel value (a vector with three elements correspogdd
the three color channels) is sufficiently distant from theansof
the other known color distributions, it is considered to bmem-
ber of the color class under consideration. When the erititetmns
been analyzed, these pixels are used to arrivenaanand avari-
ancethat then represent tHgD Gaussian density functioof the
color being learnt. In order to suppress the noise that isrintt in
the camera image, the robot repeatedly extracts informditem
several screen-shots of the same image. This redundanageso
more accurate statistics corresponding to the desiredscolo

The functionUpdateColorMap(takes as input all the learned
Gaussians and generates the full mapping from the pixekbvialu
the color label. This process of assigning color labels thezell
in the 12&128x128 cube is the most computationally intensive part
of the learning process. Hence, it is performed only oncg free
seconds or so. Each cell is assigned a color label correspptal
the color which is moslikely for that set of color channel values,
i.e. the color whose density function (Equation 2) has thgest
probability value. The updated color map is used to segment all
subsequent images.

The segmented images are used for detecting objects, which i
turn are used to validate the colors learnt. Once a color bes b
included in the color map, the robot checks the validity @ft¢blor
parameters\Malid()) by looking for suitable objects in the current
position. Typically, it is the object that was used to ledra tolor.
The detected objects are also used to update the color p@rame

The entire learning procedure is repeated until all desiad
ors are learnt and/or the predecided learning tifiengnay has
elapsed.

By definition, the Gaussian distributions have a non-zetoeva
throughout the color space. During the learning processtdhot
could therefore classify all the image pixels into one of ¢tbéors
currently included in the map, thereby leaving no candidddés
to learn the other colors. Therefore, an image pixel is assica
particular color labelff its distance from the mean of the corre-
sponding color’s distribution lies within a certain intagmultiple
of the corresponding standard deviation. The robot is athto
dynamically modify these limits, within a range, while itlesarn-
ing the colors.

Experimental Setup

In this paper, we use the legged league field with its coloredod
goals and markers, as shown in Figure 2, as the testbed. Bbée ro
starts off withno prior knowledgef any of the colors and its goal
is to learn a color map that includes the desired colors. Heee
present the results when the robot always starts oRdsition-1
and moves through a deterministic sequence of positiorshi@sn

in Figure 2. These positions form the elements of the aPase[]

in the algorithm described above (Algorithm 1).
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Figure 2: A Line Drawing of the Learning positions.

The steps involved in the algorithm can be presented as an or-
dered list of positions, colors and objects:

1. Step-1: Position1 with head tilted downhite andgreen
learnt. Field line and center circle.

2. Step-2: Position-3ellowlearnt, Yellow goal.

3. Step-3: Position-3iinklearnt, Yellow-pink marker.

4. Step-4: Position-4luelearnt, Blue goal.

5. Step-5: Position-5hlue learnt (Disambiguatgreenand

blue), Pink-blue marker.

6. Step-6: Position-6 with head tilted down, ball color-(

ange learnt, Ball.

7. Step-7: Position-6 with head horizontal, opponent’s uni

form color learnt, Opponent.

The robot then writes out the color map and the color stasisti
to a file on the robot's memory stick. Figure 3 shows a few insage
at various stages of the learning process - note that onlgesia
corresponding to the markers are presented. A complet® vitle
the learning mechanism, as seen from the robot's camerahecan
viewed online:
www.cs.utexas.eduAustinVilla/?p=research/autwis.
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Figure 3: Images at different stages of the learning process

A few important points are to be noted with regard to the learn
ing process. IrPosition-1 learning is performed based on the fact
that a large portion of the image (in that position) consi$tgreen
The algorithm is dependent only on the inherent structutkeén-
vironment and is entirely independent of the particulaocthat is
being learnt. A concrete test would be to start the robotifomkn to
the robot) inPosition-2facing the blue goal and run the same algo-
rithm. We shall show that without a change in the learningpss,
the robotis able to learn the colblueasyellowand vice versa. For
the same reason, the procedure for learning the ball coldtsfor
balls of other colors too. This feature demonstrates thasiiess
of our algorithm to color transformations in the environmenas
long as all objects of a given color are changed to the same new
color, the procedure is unaffected.

We shall show that the algorithm enables the robot to leagn th
entire map in any fixed illumination within a range of illunaitions
(range of several 100lux decided by the camera hardware).

The positions for learning the ball and opponent colors erss
as to minimize the movement.

Experimental Results

In this section we test the accuracy of the color maps thaewer
learned autonomously on the robots, using the learning fieesk



viously described. The color maps were analyzed with respec
their segmentation accuracy on a set of sample images. We als
trained a color map by hand-segmenting a set @5 images. We
refer to this color map as thdand LabeledHLabe) color map.
This map corresponds to a fixed illumination condition areddbl-
ors are not represented as Gaussians. Instead, for each awolo
intermediate (IM) map (of the same size as the overall colap)m
is maintained. Each cell of an IM stores a count of the number o
times an image pixel that maps into that cell was labeledasdh
responding color. Each cell in the final color map is assighed
label corresponding to the color whose IM has the largestttiou
that cell.

Previous results (Hyams, Powell, & Murphy 2000; Minten
al. 2001; Sridharan & Stone 2004) suggested thatlth8 color
space could be reasonably robust to illumination variati¢the
LAB color space is an alternate 3D representation of color iesph
ical coordinates (Minteret al. 2001)). We hypothesized that the .
color map inLAB would provide better segmentation accuracy and |
to test that we trained a color mapliAB in addition to that in the
YCbCrcolor space. Though the robot is able to learn the marker
colors in both color spaces, the performance in the LAB cgjhaice h

is better. This difference is more pronounced when the auflthre Q) (h) ()

ball and/or the opponentis included in the color map becthese ) ] o

colors overlap with the marker colors and create a contertio- Figure 4: Sample Images without ball. (a)-(c) Original Images, (@)-
ing segmentation. We therefore performed the analysisaigest YChCr color space, (g)-(i) LAB color space

first with just the fixed marker colors and then with all theazsl

included.

As shown in the figures, the robot is able to learn a reasonable
color map in both color spaces when only the fixed marker solor
are considered.

To further justify the comparison over regions selected bya
man observer, we compared the performance ofiibCrand the
LAB color maps with theHLabel color map, with the entire im-
age taken into consideration. We compare withabel because
it provides almost perfect segmentation and allows us tegen
ate more labeled data. Over the same set of sample images used
before, the average classification accuracies wer8-63%.9 and
88.3+ 4.2 for YCbCrandLAB respectively. These values, though
not a proper measure of the segmentation accuracy, can bileon
ered to be worst-case estimates.

Next, we let the robot learn the ball coloorangg in addi-
tion to the marker colors. The average classification acoesare
74.8+9.2%, 94+ 5.6% and 98 + 0.8% for theYCbCr, LAB and
HLabel color maps respectively, as compared3druth The per-

On a set of sample images of the markers (15) captured us-
ing the robot’s camera (see Figure 4 for samples), we first-com
pared the performance of all three color maps with the caloel-
ing provided interactively by a human observer, @®und Truth
(GTruth). Under normal game conditions we are interested only in
the colors of the markers and other objects on the field armfor
low the horizon because other blobs are automatically tegjiein
the object recognition phase. Also, tberrect classification result
is unknown (even wittHLabe) for several background pixels in
the image. Therefore, in this test, the observer only lapkisls
suitable for analysis and these labels are compared withkldse
sification provided by the three color maps. On averag®&000
of the 33280 pixels in the image get labeled by the obseneer. T
ble 1 presents the corresponding results — the last row mpetee
averages and the standard deviations.

[ Images| YCbCr | [LAB [ HLabel | formance inLAB s statistically significant as comparedY&hCr
Worst 84 97 98 (p—value= 5x10~%). Figure 5 show the segmentation results over
Best 95 99 99 a set of images.
avg 87.84+3.18 | 97.94+0.76 | 98.8+0.44 We observe that in th& CbCrcolor space, the inclusion afr-

angein the color map causes the segmentation to degrade even over
the colors pink andyellow) that it could classify well beforé On
the other hand, in thieAB color space, the inclusion ofangedoes
) i i not degrade the performance with regard to the other knovemsco
Note that the color labeling obtained by using tieabelcolor — The only regions of the ball that the robot is unable to cfagssr-
map is almost perfect in comparison to the human color Iageli  fecily are the ones with highlights. This misclassificatitwes not
The color map generated in thé\B color space also provides a  ytthe performance of the robot since the high-level dbjemog-
similar performance and though they are both (statisgipalgnif- nition procedure is still able to find the ball without any éftohal
icantly better than th& CbCr color map (at 95% level of signifi-  constraints (the ball is rarely found in tNe€bCrcolor space). The
cance, we obtain a p-value okB)™ betweenYCbCrandLAB), robot is able to use this color map to play a game as well as it
there is not much difference in the qualitative performance could withHLabel We therefore learnt the color of the opponent’s
Figure 4 |IIu_strates the_ results of segmentation over theoke uniform (red) only in theLAB color space. Figure 6 shows the seg-
samplemarkerimages, using the color map obtained at the end of mentation results with all the colors. There is still no ageeeffect
the learning process. on the previously learnt colors.
The only disadvantage of using th&\B color space is that it
3The results are clearest when the images are seen in takes a little more time to complete the color learning. \Whstarn-
color. These and several more images are available at —
www.cs.utexas.eduAustinVilla/?p=research/autwis “Note, especially, the results on the image with the yelloal gad ball

Table 1: Classification Accuracies (%) on a pixel-by-pixel basisaoset
of test images.



the beacon which could be detected as a ball). But the roladnés
to learn a new (suitable) color map in a few minutes.

F

Figure 5: Sample Images with Ball. (a)-(c) Original Images, (d)XfIbCr
color space, (g)-(i) LAB color space

@ (h) 0]
Figure 7: Sample Images under new illumination. (a)-(c) Originahges,
(d)-(f) Old Map, (9)-(i) New Map

Finally, to test the hypothesis that the algorithm is robosblor
re-mappingwe started the learning process (unknown to the robot)
with the robot inPosition-2 facing the blue goal (see Figure 2). The
robot ended up learning the coldlueasyellowand vice versa. Fig-
ure 8 presents a sample of the corresponding segmentasioltsre
This confirms our hypothesis that the process is totally ddest
on shape and size and not on the particular color that is beamgt.
For example, if the field were blue with yellow lines and thalgo
were green and white, the robot wouldn’t notice the differeand
no change in the algorithm would be required. This also iepli
that if such a robot is used in a house, repainting a wall woold
(d) (e) ()] pose a problem to the learning process.

Figure 6: Sample Images with Opponent and Ball. (a)-(c) Originaldes
(d)-(f) Segmented images

ing in theLAB color space, we still do not want to transform each
pixel in the test image fronYCbCr (the native image format) to
LAB as this would make the segmentation phase extremely time
consuming on the robot. So, when updating the color map in the
learning processUpdateColorMap()in Algorithm 1), we assign

the color label to each discrete cell in tNe€bCr color map by
determining the label assigned to the corresponding piakles

in LAB. This ensures that test image segmentation on the robot i
still a table lookup and therefore takes the same time astipgin
YCbCr. The additional pixel-level transformation is the causthef
increase in the training time, though it is substantialfgetf by the S . :

ability to segment better. The learning process takéssminutes (d) (e) ®

in YCbCrwhile it takes~ 4.5minutesin LAB. Note that both of Figure 8: Sample Images with colongversed (a)-(c) Original images,
these numbers are still much smaller than the time takennierge  (d)-(f) Colors reversed

ateHLabel an hour or more.

The robot can perform the learning process under any gived fix It is essential to note that while learning color distrilouts, we
illumination within a range of illuminations in our lab (Vas over are not attempting to modebsolutecolors — color labels do not
several 100 lux). Consider the results over the images shown  hold much significance. We are more interested in makingahetr
Figure 7. When the illumination changes, the original cotap learn the colors autonomously from its environment, usinlg the

does not perform well (notice the green in the goal and oramge  inherent structure.



To illustrate the learning process better, we provide tdees of
the learning process, as seen from the robot's camera.
(web-linkwww.cs.utexas.eduAustinVilla/?p=research/autwis)

Related Work

Color segmentation is a well-researched field in computgpmi
with several good algorithms, for example mean-shift (Coima
ciu & Meer 2002) and gradient-descent based cost-function m
imization (Sumengen, Manjunath, & Kenney 2003). But these i
volve computation that is infeasible to perform on autonaomo
robots given the computational and memory constraintsnkve
the RoboCup domain, several algorithms have been impladent
The baseline approach involves creating mappings from €leCf
values (ranging from 6 255 in each dimension) to the color la-
bels (Utheret al.2001; Bruce, Balch, & Veloso 2000). Other meth-
ods include the use of decision trees (Clegral. 2002) and the
creation of axis-parallel rectangles in the color spaceh@Det al.
2004). Attempts to automatically learn the color map havenbe
rarely successful. One such instance is (Jungel 2004) eivhtre
author presents a method to learn the color map using thyeesla
of color maps with increasing precision levels, colors beiepre-
sented as cuboids. But the generated map is reported to fzes not
accurate as the hand-labeled one and other domain speaific co
straints are introduced to disambiguate between objeotsaiur-
ing the object recognition phase. In (Schulz & Fox 2004)ocoare
estimated using a hierarchical bayesian model @i#lussiarpriors
and a joint posterior on robot position and environmenktafiina-
tion. Our approach on the other hand learns a color map using a
efficientGaussiarrepresentation for the color classes with no prior
color knowledge. It involves very little storage and theutftnt
color map is comparable in accuracy to the hand-labeled lone.
addition, this is done using a very small set of images intlean
five minutes. Note that not only is our approach differeetiain
that it learns the colors autonomously, thus dramatic&tucing
human effort, but it also yields good qualitative performan

Conclusions/Future Work

We have presented an approach to automating the color mgarni
and segmentation process on-board a legged robot withelimit
computational and storage resources. In spite of thevelgatiow-
resolution images with inherent noise and distortion, tgerdhm
enables the robot to autonomously generate its color mapénya
short period of time. The corresponding segmentation acguaf-
ter about five minutes is shown to be comparable to the that ob-
tained by hand-labeling several images over a period of an ¢vo
more.

Though we have tested our approach in a single constrained en
vironment, in principle, it applies much more generallyl tat
is needed is an environmental model with the locations of dis
tinctive features labeled. In our work, we use colors as tise d
tinctive features. But in environments with features thegn&
constant-colored, other feature representations, suttioas used
by SIFT (Lowe 2004), could be used. As long as kbeationsof
the objects remain as indicated on the map, the robot coblgstty
re-learn how to detect them.

In the domain considered here, bo#tCbCr and LAB color
spaces are reasonably good for learning the marker cotasid-
ing ball color prangg causes a significant difference in perfor-
mance between the two color spaces considere8B performs
much better here (and even afted is included). The algorithm is
dependent only on the structure inherent in the environraedta
re-mappingof the colors does not prevent the robot from learning
them. Further, the color map can be learnt in several fixedhil
nation conditions between a minimum and maximum on the field.

The learning can be easily repeated if a substantial variatiillu-
mination is noticed. This variation could be detected ashation
of the shift in the means of the various colors.

Currently, the color map is learnt from a known fixed starting
position without any prior knowledge of colors. An extenstbat
we are currently working on is to learn from any given staytin
position on the field.
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