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Abstract
Color segmentation is a challenging subtask in computer vi-
sion. Most popular approaches are computationally expensive,
involve an extensive off-line training phase and/or rely ona sta-
tionary camera. This paper presents an approach for color learn-
ing on-board a legged robot with limited computational and
memory resources. A key defining feature of the approach is
that it works without any labeled training data. Rather, it trains
autonomously from a color-coded model of its environment.
The process is fully implemented, completely autonomous, and
provides high degree of segmentation accuracy.

Introduction
Computer vision is a major area of research with applications in
robotics and artificial intelligence. One of the principal subtasks in
vision is that ofcolor segmentation: mapping each pixel in a cam-
era image to a color label. Though significant advances have been
made in this field (Comaniciu & Meer 2002; Sumengen, Manju-
nath, & Kenney 2003), most of the algorithms are computationally
expensive and/or involve a time consuming off-line preprocessing
phase. In addition, segmentation is typically quite sensitive to il-
lumination variations: a change in illumination causes a nonlinear
shift in the mapping which could necessitate a repetition ofthe en-
tire training phase.

This paper presents an efficient online algorithm for color seg-
mentation in task-oriented scenarios with limited computational re-
sources. Autonomous mobile robots operating in controlledenvi-
ronments represent one such scenario. A key defining featureof
the algorithm is that it works without any labeled training data.
Rather it trains autonomously from a color-coded model of its en-
vironment.

The problem of color segmentation as addressed here can be
characterized by the following set of inputs, outputs and con-
straints:

1. Inputs:� A color-coded model of the world that the robot inhabits.
The model contains a representation of the size, shape, po-
sition, and colors of all objects of interest.� A stream of limited-field-of-view images with noise and dis-
tortion as a result of motion of the camera and/or robot. The
images present a view of thestructuredworld with many
useful objects, but also many unpredictable elements.� The initial position of the robot and its joint angles over time,
particularly those specifying the camera motion.

2. Output:� A Color Map that assigns acolor label to each point in the
input color space.

3. Constraints:
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� Limited computational and memory resources with all pro-
cessing being performed on-board the robot.� Rapid motion of the limited-field-of-view camera with the
associated noise and image distortions.

Note in particular that there isno labeled training data or apriori
bias regarding the labels of points in color space. This provides
for robustness to different lighting conditions and even changes of
entire colors (e.g. repainting all red objects as blue and vice versa)
without any disruption to the robot.

Our goal is to generate a reliable mapping from the above in-
puts to the outputs, while operating within the constraintsimposed
by the test platform. In this paper, we describe an approach to
autonomously generate such a color map in real-time. The algo-
rithm is fully implemented and tested using the SONY Aibo legged
robots (Sony 2004) in a pre-existing task environment.

The remainder of the paper is organized as follows. We first for-
mally specify our problem and describe the test domain. Then, we
describe the overall algorithm and the specific instantiation in our
problem domain. The experimental setup and results are presented
in the subsequent sections. We conclude with a brief description of
related work and our conclusions.

Problem Specification
In this section we formally describe the problem of generating a
color map for the robot. We also elaborate on our specific testplat-
form and its constraints.

To be able to recognize objects and operate in a color-coded
world, a robot generally needs to recognize a certain discrete num-
ber (N) of colors (ω 2 [0;N�1℄). A complete mapping identifies a
color label for each possible point in the color space (Gonzalez &
Woods 2002) under consideration:8p;q; r 2 [0;255℄ (1)fC1;p;C2;q;C3;rg 7! ωjω2[0;N�1℄
whereC1;C2;C3 are the three color channels (e.g. RGB or YCbCr),
with the corresponding values ranging from 0�255.

For representing the colors, we use a Three-Dimensional (3D)
Gaussian model with the assumption of mutually independentcolor
channels: a 3D Gaussian was observed to reasonably approximate
actual color distributions (except for some edge effects).The in-
dependence assumption implies that there is no correlationamong
the values along the three color channels for any given color. In
practice, the independence assumption does not hold perfectly, de-
pending on the color space under consideration. For example, in
our lab, the correlation coefficients between theCb andCr color
channels in theYCbCr color space areρcbcr = �0:71;�0:67 for
orange and yellow respectively. Nonetheless, the independence as-
sumption closely approximates reality and greatly simplifies the
calculations — computationally expensive operations suchas in-
verting a covariance matrix need not be performed.



Each colorω 2 [0;N�1℄ is then represented by the density dis-
tribution:
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where,ci 2 [Cimin;Cimax℄ represents the value at a pixel along a color
channelCi while µCi and σCi represent the corresponding means
and variances.

Though more complex representations (of color distributions)
have been used in the literature, the Gaussian model has the advan-
tage that the means and variances of the distributions are the only
statistics that need to be collected and stored for each color that is
to be learnt. This feature makes the learning process fast and feasi-
ble to execute on the robot. The next section presents the learning
setup and the actual learning process that the robot goes through to
learn the color map. The remainder of this section elaborates on the
robot and the experimental testbed.

The SONY Aibo,ERS-7, is a four legged robot whose primary
sensor is a CMOS camera located at the tip of its nose, with a field-
of-view of 56:9o (hor) and 45:2o (ver), providing the robot with
a limited view of its environment. The images are captured inthe
YCbCrformat at 30Hz with an image resolution of 208�160 pix-
els. The robot has 20 degrees-of-freedom (dof), three in each of
its four legs, three in its head, and a total of five in its tail,mouth,
and ears. It also has noisy touch sensors, IR sensors, and a wire-
less LAN card for inter-robot communication. The camera jerks
around a lot due to the legged (as opposed to wheeled) locomotion
modality, and images have a relatively low resolution and possess
common defects such as noise and distortion.

The RoboCup Legged League is a research initiative which cur-
rently has teams of four robots playing a competitive game ofsoc-
cer on an indoor field of size� 3m�4:5m (see Figure 1).

Figure 1: An Image of the Aibo and the field.

On the robot, visual processing occurs in two stages: color seg-
mentation and object recognition (et al. 2004). In the off-board
training phase, we train a color map that maps a space of 128�
128� 128 possible pixel values1 to one of the 9 different colors
that appear in its environment (pink, yellow, blue, orange,red, dark
blue, white, green, and black). The color map is then used to seg-
ment the images and construct connected constant-colored blobs
out of the segmented images. The blobs are used to detect useful
objects (e.g. markers, the ball, and opponents).

1we use half the normal resolution of 0-255 along each dimension to
reduce memory requirements

The robot uses the markers to localize itself on the field and co-
ordinates with its team members to score goals on the opponent.
All processing, for vision, localization, locomotion, andaction-
selection, is performed on board the robots, using a 576MHz pro-
cessor. Currently, games are played under constant and reasonably
uniform lighting conditions but the goal is to enable the robots to
play under varying illumination conditions.2 This goal puts added
emphasis on the ability to learn and adapt the color map in a very
short period of time.

A variety of previous approaches have been implemented in the
RoboCup domain to generate the color map (see therelated work
section at the end of the paper). But, almost all of them involve
an elaborate training process wherein the color map is generated
by hand-labeling several (� 20� 30) images over a period of at
least an hour. This process leads to a long setup time before the
games can begin. This paper presents a novel approach that enables
the robot to autonomously learn the entire color map, using the
inherent structure of the environment and about seven images, in
less than five minutes. The segmentation accuracy is comparable
to that obtained by the color map generated by the hand-labeling
process.

Learning Setup
In this section we describe the task that the robot executes to au-
tonomously learn the color distributions. Our learning mechanism
is summarized in Algorithm 1. Specific implementation details are
explained below.

Algorithm 1 General Color Learning
Require: Starting Pose Known, Model of the robot’s world.
Require: Emptycolor map.
Require: Array of poses for learning colors,Pose[℄.
Require: Array of objects, described as shapes, from which the

colors need to be learnt,Ob jects[℄.
Require: Ability to move to a target pose.

1: i = 0;N = MaxColors
2: Timest =CurrTime
3: while i < N andCurrTime�Timest � Timemax do
4: Motion= RequiredMotion(Pose[i℄ )
5: PerformMotionfMonitored using visual inputg
6: if LearnGaussParams(Colors[i℄ ) then
7: LearnMeanandVarianceof color from candidate image

pixels
8: UpdateColorMap()
9: if !Valid( Colors[i℄ ) then

10: RemoveFromMap(Colors[i℄ )
11: end if
12: end if
13: i = i +1
14: end while
15: Write out the color statistics and the color map.

The algorithm can be described as follows: The robot starts off at
a known position with a known model of its world. It has no initial
color information, i.e. the means and variances of the colors to be
learnt are initialized to zero and the images are all segmentedblack.
It also has three lists: the list of colors to be learnt (Colors), a list of
corresponding positions that are appropriate to learn those colors
(Pose), and a list of corresponding objects, defined as shapes, that
can be used to learn the colors. Using a navigation function (Re-
quiredMotion()), the robot determines the motion required, if any,

2The stated goal of RoboCup is to create a team of humanoid robots
that can beat the human soccer champions by the year 2050 on a real,
outdoor soccer field (Kitanoet al.1998)



to place it in a position corresponding to the first entry inPose, and
executes the motion command. Since the motion is noisy, the robot
monitors the motion to the target position by searching for acandi-
date blob suitable for learning the desired color. The object shape
definition – the corresponding entry in theObjectsarray – leads to
a set of constraints (heuristiccandidacy tests) that are used to se-
lect the candidate blob. This typically corresponds to an object in
the environment that has the color the robot is currently interested
in learning. The robot stops when either a suitable blob is found
or it thinks it has reached its target position. Further details of the
candidacy testscan be found in our team’s technical report (et al.
2004).

Once in position, the robot executes the functionLearnGauss-
Params()to learn the color. If a suitable candidate blob ofunknown
color (black in our case) exists, each pixel of the blob is examined.
If the pixel value (a vector with three elements corresponding to
the three color channels) is sufficiently distant from themeansof
the other known color distributions, it is considered to be amem-
ber of the color class under consideration. When the entire blob has
been analyzed, these pixels are used to arrive at ameanand avari-
ancethat then represent the3D Gaussian density functionof the
color being learnt. In order to suppress the noise that is inherent in
the camera image, the robot repeatedly extracts information from
several screen-shots of the same image. This redundancy provides
more accurate statistics corresponding to the desired colors.

The functionUpdateColorMap()takes as input all the learned
Gaussians and generates the full mapping from the pixel value to
the color label. This process of assigning color labels to each cell
in the 128x128x128 cube is the most computationally intensive part
of the learning process. Hence, it is performed only once very five
seconds or so. Each cell is assigned a color label corresponding to
the color which is mostlikely for that set of color channel values,
i.e. the color whose density function (Equation 2) has the largest
probability value. The updated color map is used to segment all
subsequent images.

The segmented images are used for detecting objects, which in
turn are used to validate the colors learnt. Once a color has been
included in the color map, the robot checks the validity of the color
parameters (Valid()) by looking for suitable objects in the current
position. Typically, it is the object that was used to learn the color.
The detected objects are also used to update the color parameters.

The entire learning procedure is repeated until all desiredcol-
ors are learnt and/or the predecided learning time (Timemax) has
elapsed.

By definition, the Gaussian distributions have a non-zero value
throughout the color space. During the learning process, the robot
could therefore classify all the image pixels into one of thecolors
currently included in the map, thereby leaving no candidateblobs
to learn the other colors. Therefore, an image pixel is assigned a
particular color labeliff its distance from the mean of the corre-
sponding color’s distribution lies within a certain integral multiple
of the corresponding standard deviation. The robot is allowed to
dynamically modify these limits, within a range, while it islearn-
ing the colors.

Experimental Setup

In this paper, we use the legged league field with its color coded
goals and markers, as shown in Figure 2, as the testbed. The robot
starts off withno prior knowledgeof any of the colors and its goal
is to learn a color map that includes the desired colors. Here, we
present the results when the robot always starts off inPosition-1
and moves through a deterministic sequence of positions, asshown
in Figure 2. These positions form the elements of the arrayPose[]
in the algorithm described above (Algorithm 1).
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Figure 2: A Line Drawing of the Learning positions.

The steps involved in the algorithm can be presented as an or-
dered list of positions, colors and objects:

1. Step-1: Position1 with head tilted down,white andgreen
learnt. Field line and center circle.
2. Step-2: Position-2,yellow learnt, Yellow goal.
3. Step-3: Position-3,pink learnt, Yellow-pink marker.
4. Step-4: Position-4,blue learnt, Blue goal.
5. Step-5: Position-5,blue learnt (Disambiguategreenand

blue), Pink-blue marker.
6. Step-6: Position-6 with head tilted down, ball color (or-

ange) learnt, Ball.
7. Step-7: Position-6 with head horizontal, opponent’s uni-

form color learnt, Opponent.
The robot then writes out the color map and the color statistics

to a file on the robot’s memory stick. Figure 3 shows a few images
at various stages of the learning process - note that only images
corresponding to the markers are presented. A complete video of
the learning mechanism, as seen from the robot’s camera, canbe
viewed online:
www.cs.utexas.edu/�AustinVilla/?p=research/autovis.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 3: Images at different stages of the learning process

A few important points are to be noted with regard to the learn-
ing process. InPosition-1, learning is performed based on the fact
that a large portion of the image (in that position) consistsof green.
The algorithm is dependent only on the inherent structure ofthe en-
vironment and is entirely independent of the particular color that is
being learnt. A concrete test would be to start the robot (unknown to
the robot) inPosition-2facing the blue goal and run the same algo-
rithm. We shall show that without a change in the learning process,
the robot is able to learn the colorblueasyellowand vice versa. For
the same reason, the procedure for learning the ball color works for
balls of other colors too. This feature demonstrates the robustness
of our algorithm to color transformations in the environment — as
long as all objects of a given color are changed to the same new
color, the procedure is unaffected.

We shall show that the algorithm enables the robot to learn the
entire map in any fixed illumination within a range of illuminations
(range of several 100lux decided by the camera hardware).

The positions for learning the ball and opponent colors are set so
as to minimize the movement.

Experimental Results
In this section we test the accuracy of the color maps that were
learned autonomously on the robots, using the learning taskpre-



viously described. The color maps were analyzed with respect to
their segmentation accuracy on a set of sample images. We also
trained a color map by hand-segmenting a set of� 25 images. We
refer to this color map as theHand Labeled(HLabel) color map.
This map corresponds to a fixed illumination condition and the col-
ors are not represented as Gaussians. Instead, for each color, an
intermediate (IM) map (of the same size as the overall color map)
is maintained. Each cell of an IM stores a count of the number of
times an image pixel that maps into that cell was labeled as the cor-
responding color. Each cell in the final color map is assignedthe
label corresponding to the color whose IM has the largest count in
that cell.

Previous results (Hyams, Powell, & Murphy 2000; Mintenet
al. 2001; Sridharan & Stone 2004) suggested that theLAB color
space could be reasonably robust to illumination variations (the
LABcolor space is an alternate 3D representation of color in spher-
ical coordinates (Mintenet al. 2001)). We hypothesized that the
color map inLABwould provide better segmentation accuracy and
to test that we trained a color map inLAB in addition to that in the
YCbCrcolor space. Though the robot is able to learn the marker
colors in both color spaces, the performance in the LAB colorspace
is better. This difference is more pronounced when the colorof the
ball and/or the opponent is included in the color map becausethese
colors overlap with the marker colors and create a contention dur-
ing segmentation. We therefore performed the analysis in stages:
first with just the fixed marker colors and then with all the colors
included.

On a set of sample images of the markers (15) captured us-
ing the robot’s camera (see Figure 4 for samples), we first com-
pared the performance of all three color maps with the color label-
ing provided interactively by a human observer, theGround Truth
(GTruth). Under normal game conditions we are interested only in
the colors of the markers and other objects on the field and/orbe-
low the horizon because other blobs are automatically rejected in
the object recognition phase. Also, thecorrect classification result
is unknown (even withHLabel) for several background pixels in
the image. Therefore, in this test, the observer only labelspixels
suitable for analysis and these labels are compared with theclas-
sification provided by the three color maps. On average,� 6000
of the 33280 pixels in the image get labeled by the observer. Ta-
ble 1 presents the corresponding results – the last row presents the
averages and the standard deviations.

Images YCbCr LAB HLabel
Worst 84 97 98
Best 95 99 99
avg 87:8�3:18 97:9�0:76 98:8�0:44

Table 1: Classification Accuracies (%) on a pixel-by-pixel basis ona set
of test images.

Note that the color labeling obtained by using theHLabelcolor
map is almost perfect in comparison to the human color labeling.
The color map generated in theLAB color space also provides a
similar performance and though they are both (statistically) signif-
icantly better than theYCbCrcolor map (at 95% level of signifi-
cance, we obtain a p-value of 6x10�4 betweenYCbCrandLAB),
there is not much difference in the qualitative performance.

Figure 4 illustrates the results of segmentation over the set of
samplemarker images, using the color map obtained at the end of
the learning process.3

3The results are clearest when the images are seen in
color. These and several more images are available at:
www.cs.utexas.edu/�AustinVilla/?p=research/autovis

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Sample Images without ball. (a)-(c) Original Images, (d)-(f)
YCbCr color space, (g)-(i) LAB color space

As shown in the figures, the robot is able to learn a reasonable
color map in both color spaces when only the fixed marker colors
are considered.

To further justify the comparison over regions selected by ahu-
man observer, we compared the performance of theYCbCrand the
LAB color maps with theHLabel color map, with the entire im-
age taken into consideration. We compare withHLabel because
it provides almost perfect segmentation and allows us to gener-
ate more labeled data. Over the same set of sample images used
before, the average classification accuracies were 65:8� 7:9 and
88:3�4:2 for YCbCrandLAB respectively. These values, though
not a proper measure of the segmentation accuracy, can be consid-
ered to be worst-case estimates.

Next, we let the robot learn the ball color (orange) in addi-
tion to the marker colors. The average classification accuracies are
74:8�9:2%, 94�5:6% and 98:5�0:8% for theYCbCr, LAB and
HLabelcolor maps respectively, as compared toGTruth. The per-
formance inLAB is statistically significant as compared toYCbCr
(p�value= 5x10�4). Figure 5 show the segmentation results over
a set of images.

We observe that in theYCbCrcolor space, the inclusion ofor-
angein the color map causes the segmentation to degrade even over
the colors (pink andyellow) that it could classify well before.4 On
the other hand, in theLABcolor space, the inclusion oforangedoes
not degrade the performance with regard to the other known colors.
The only regions of the ball that the robot is unable to classify per-
fectly are the ones with highlights. This misclassificationdoes not
hurt the performance of the robot since the high-level object recog-
nition procedure is still able to find the ball without any additional
constraints (the ball is rarely found in theYCbCrcolor space). The
robot is able to use this color map to play a game as well as it
could withHLabel. We therefore learnt the color of the opponent’s
uniform (red) only in theLABcolor space. Figure 6 shows the seg-
mentation results with all the colors. There is still no adverse effect
on the previously learnt colors.

The only disadvantage of using theLAB color space is that it
takes a little more time to complete the color learning. While learn-

4Note, especially, the results on the image with the yellow goal and ball



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: Sample Images with Ball. (a)-(c) Original Images, (d)-(f)YCbCr
color space, (g)-(i) LAB color space

(a) (b) (c)

(d) (e) (f)

Figure 6: Sample Images with Opponent and Ball. (a)-(c) Original Images,
(d)-(f) Segmented images

ing in theLAB color space, we still do not want to transform each
pixel in the test image fromYCbCr (the native image format) to
LAB as this would make the segmentation phase extremely time
consuming on the robot. So, when updating the color map in the
learning process (UpdateColorMap()in Algorithm 1), we assign
the color label to each discrete cell in theYCbCr color map by
determining the label assigned to the corresponding pixel values
in LAB. This ensures that test image segmentation on the robot is
still a table lookup and therefore takes the same time as operating in
YCbCr. The additional pixel-level transformation is the cause ofthe
increase in the training time, though it is substantially offset by the
ability to segment better. The learning process takes� 2:5minutes
in YCbCr while it takes� 4:5minutesin LAB. Note that both of
these numbers are still much smaller than the time taken to gener-
ateHLabel, an hour or more.

The robot can perform the learning process under any given fixed
illumination within a range of illuminations in our lab (varies over
several 100 lux). Consider the results over the images shownin
Figure 7. When the illumination changes, the original colormap
does not perform well (notice the green in the goal and orangein

the beacon which could be detected as a ball). But the robot isable
to learn a new (suitable) color map in a few minutes.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7: Sample Images under new illumination. (a)-(c) Original images,
(d)-(f) Old Map, (g)-(i) New Map

Finally, to test the hypothesis that the algorithm is robustto color
re-mapping, we started the learning process (unknown to the robot)
with the robot inPosition-2, facing the blue goal (see Figure 2). The
robot ended up learning the colorblueasyellowand vice versa. Fig-
ure 8 presents a sample of the corresponding segmentation results.
This confirms our hypothesis that the process is totally dependent
on shape and size and not on the particular color that is beinglearnt.
For example, if the field were blue with yellow lines and the goals
were green and white, the robot wouldn’t notice the difference and
no change in the algorithm would be required. This also implies
that if such a robot is used in a house, repainting a wall wouldnot
pose a problem to the learning process.

(a) (b) (c)

(d) (e) (f)

Figure 8: Sample Images with colorsreversed. (a)-(c) Original images,
(d)-(f) Colors reversed

It is essential to note that while learning color distributions, we
are not attempting to modelabsolutecolors – color labels do not
hold much significance. We are more interested in making the robot
learn the colors autonomously from its environment, using only the
inherent structure.



To illustrate the learning process better, we provide the videos of
the learning process, as seen from the robot’s camera.
(web-link:www.cs.utexas.edu/�AustinVilla/?p=research/autovis)

Related Work
Color segmentation is a well-researched field in computer vision
with several good algorithms, for example mean-shift (Comani-
ciu & Meer 2002) and gradient-descent based cost-function min-
imization (Sumengen, Manjunath, & Kenney 2003). But these in-
volve computation that is infeasible to perform on autonomous
robots given the computational and memory constraints. Even in
the RoboCup domain, several algorithms have been implemented.
The baseline approach involves creating mappings from the YCbCr
values (ranging from 0� 255 in each dimension) to the color la-
bels (Utheret al.2001; Bruce, Balch, & Veloso 2000). Other meth-
ods include the use of decision trees (Chenet al. 2002) and the
creation of axis-parallel rectangles in the color space (Cohenet al.
2004). Attempts to automatically learn the color map have been
rarely successful. One such instance is (Jungel 2004), wherein the
author presents a method to learn the color map using three layers
of color maps with increasing precision levels, colors being repre-
sented as cuboids. But the generated map is reported to be notas
accurate as the hand-labeled one and other domain specific con-
straints are introduced to disambiguate between object colors, dur-
ing the object recognition phase. In (Schulz & Fox 2004), colors are
estimated using a hierarchical bayesian model withGaussianpriors
and a joint posterior on robot position and environmental illumina-
tion. Our approach on the other hand learns a color map using an
efficientGaussianrepresentation for the color classes with no prior
color knowledge. It involves very little storage and the resultant
color map is comparable in accuracy to the hand-labeled one.In
addition, this is done using a very small set of images in lessthan
five minutes. Note that not only is our approach differentiated in
that it learns the colors autonomously, thus dramatically reducing
human effort, but it also yields good qualitative performance.

Conclusions/Future Work
We have presented an approach to automating the color learning
and segmentation process on-board a legged robot with limited
computational and storage resources. In spite of the relatively low-
resolution images with inherent noise and distortion, the algorithm
enables the robot to autonomously generate its color map in avery
short period of time. The corresponding segmentation accuracy af-
ter about five minutes is shown to be comparable to the that ob-
tained by hand-labeling several images over a period of an hour or
more.

Though we have tested our approach in a single constrained en-
vironment, in principle, it applies much more generally. All that
is needed is an environmental model with the locations of dis-
tinctive features labeled. In our work, we use colors as the dis-
tinctive features. But in environments with features that aren’t
constant-colored, other feature representations, such asthose used
by SIFT (Lowe 2004), could be used. As long as thelocationsof
the objects remain as indicated on the map, the robot could robustly
re-learn how to detect them.

In the domain considered here, bothYCbCr and LAB color
spaces are reasonably good for learning the marker colors. Includ-
ing ball color (orange) causes a significant difference in perfor-
mance between the two color spaces considered -LAB performs
much better here (and even afterred is included). The algorithm is
dependent only on the structure inherent in the environmentand a
re-mappingof the colors does not prevent the robot from learning
them. Further, the color map can be learnt in several fixed illumi-
nation conditions between a minimum and maximum on the field.

The learning can be easily repeated if a substantial variation in illu-
mination is noticed. This variation could be detected as a function
of the shift in the means of the various colors.

Currently, the color map is learnt from a known fixed starting
position without any prior knowledge of colors. An extension that
we are currently working on is to learn from any given starting
position on the field.
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