
In Proceedings of the Twenty-First National Conference on Artificial Intelligence (AAAI-06),
Boston, MA, July 2006.

Know Thine Enemy: A Champion RoboCup Coach Agent

Gregory Kuhlmann, William B. Knox, and Peter Stone
Department of Computer Sciences, The University of Texas at Austin

1 University Station C0500, Austin, Texas 78712-1188
{kuhlmann,bradknox,pstone}@cs.utexas.edu

Abstract

In a team-based multiagent system, the ability to con-
struct a model of an opponent team’s joint behavior
can be useful for determining an agent’s expected dis-
tribution over future world states, and thus can inform
its planning of future actions. This paper presents an
approach to team opponent modeling in the context
of the RoboCup simulation coach competition. Specif-
ically, it introduces an autonomous coach agent capable
of analyzing past games of the current opponent, ad-
vising its own team how to play against this opponent,
and identifying patterns or weaknesses on the part of
the opponent. Our approach is fully implemented and
tested within the RoboCup soccer server, and was the
champion of the RoboCup 2005 simulation coach com-
petition.

Introduction

In an integrated multiagent system, the ability to pre-
dict the behavior of the other agents in the environment
can be crucial to one’s own performance. Specifically,
knowing the likely actions of other agents can influ-
ence an agent’s expected distribution over future world
states, and thus inform its planning of future actions.

In an adversarial environment, this predicted behav-
ior of other agents is referred to as an opponent model.
Opponent models are particularly useful if they include
some identification of potential patterns or weaknesses
on the part of the opponent. For example, a chess
grandmaster may study past games of a future oppo-
nent so as to determine how best to play away from
that opponent’s strengths.

In multiagent adversarial settings, in which the ad-
versary consists of a team of opponents, it can be useful
to explicitly model the opponent as engaging in team
activities. For example, Tambe (1996) presents a sim-
ulated air-combat scenario in which an individual’s be-
havior can indicate the commencement of a team “pin-
cer” maneuver that requires multiple participants, thus
enabling the prediction of other opponents’ future ac-
tions as well.

This paper presents an approach to team opponent
modeling in the context of the RoboCup simulation
coach competition. RoboCup is an international re-
search initiative that uses the game of soccer as a
testbed to advance the state of the art in AI and
robotics (Kitano et al. 1997). In most RoboCup soccer

Copyright c© 2006, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

leagues the goal is to create complete teams of agents
that can succeed at the task of winning soccer games.
Though opponent modeling can play a part in this task,
it is often the case that opponents cannot be observed
prior to playing against them (at least not by the agents
themselves). Even when they can be observed, oppo-
nent modeling challenges are easily overshadowed by
challenges such as vision, localization, locomotion, in-
dividual ball manipulation, teamwork, etc.

In contrast, the goal of the simulation coach compe-
tition is to focus entirely on opponent modeling. This
focus is accomplished by i) providing entrants with
recordings of the opponents’ past play that is under-
standable by the coach agent; ii) providing each en-
trant with an identical team of fully competent player
agents; and iii) restricting the actions available to ad-
vice regarding how the team should alter its playing
style to fit a particular opponent.

This paper introduces UT Austin Villa, the cham-
pion of the RoboCup 2005 coach competition. We be-
gin with a description of the details of the RoboCup
coach competition. We then present our approach to
modeling team behavior within this context, followed
by UT Austin Villa’s strategy for identifying opponent
patterns or weaknesses. We then summarize and ana-
lyze the results of the RoboCup 2005 competition and
present the results of subsequent experiments that fur-
ther emphasize the agent’s abilities.

The RoboCup Coach Competition

RoboCup simulated soccer has been used as the basis
for successful international competitions and research
challenges. As presented in detail by Stone (Stone
2000), the RoboCup soccer server (Noda et al. 1998;
Chen et al. 2003) provides a fully distributed, multi-
agent domain with both teammates and adversaries.
There is hidden state, meaning that each agent has only
a partial world view at any given moment. The agents
also have noisy sensors and actuators, meaning that
they do not perceive the world exactly as it is, nor can
they affect the world exactly as intended. In addition,
the perception and action cycles are asynchronous, pro-
hibiting the traditional AI paradigm of using perceptual
input to trigger actions. Communication opportunities
are limited, and the agents must make their decisions in
real-time. These italicized domain characteristics com-
bine to make simulated robotic soccer a realistic and
challenging domain.



Since 1997, there have been annual international
competitions in the soccer server in which each entrant
creates a complete team of 11 autonomous agents to
play against the other teams. The RoboCup simula-
tion coach competition, introduced in 2001, is situated
within the same soccer server. However, rather than
creating full teams of agents, entrants create a single
coach agent that has an omniscient view of the field,
but whose only possible action is verbal advice to its
team communicated via a formal language.

In the soccer server, an online coach agent has three
main advantages over a standard player. First, a coach
is given a noise-free omniscient view of the field at all
times. Second, the coach is not required to execute ac-
tions in every simulator cycle and can, therefore, allo-
cate more resources to high-level considerations. Third,
in competition, the coach has access to logfiles of past
games played by the opponent, giving it access to im-
portant strategic insights.

On the other hand, the coaching problem is quite
difficult due to two main constraints. First, to avoid
reducing the domain to a centralized control task, a
coach agent is limited in how often it can communicate
with its team members. During game play, the coach
may only send advice every 30 seconds and the advice
does not reach the players until 5 seconds after it is
sent. In addition, the coach must give advice to players
that have been developed independently, often by other
researchers. For this to be possible, coaches communi-
cate with coachable players via a standardized coach
language called Clang (Chen et al. 2003).

In its original conception, the coach competition
provided 24 hours from the time the opponent log-
files (recordings of their past games) were released un-
til the competition was run. As a result, coach de-
velopers were able to manually modify their coaches
to help the coachable players defeat the opponent
(though without any opportunities to actually prac-
tice against the opponent). Though the coach competi-
tion was developed for the purpose of encouraging au-
tomated opponent modeling, with just two exceptions
that we are aware of (Riley, Veloso, & Kaminka 2002;
Kuhlmann, Stone, & Lallinger 2005), most entrants cre-
ated their coaches entirely by hand.

For the first four years of the competition, beginning
in 2001, coaches were evaluated on the performance of
the coached team against a fixed opponent. While the
intention was for the coach to model the opponent to
find a team-specific strategy, many coaches performed
well by using highly tuned general purpose strategies.

In order to place all the emphasis on opponent mod-
eling, in 2005, the competition underwent drastic rule
changes. In the 2005 competition, coach agents were
directly evaluated based on their ability to model a
teams with specific weaknesses. Such weaknesses in-
clude pulling the goalie out too far, leaving part of
the field unguarded, kicking the ball out of bounds fre-
quently, etc. After modeling the team, the coach is
rated on how well it recognizes these weaknesses when

they show up in a different context. To be success-
ful, a coach must isolate these weaknesses, called pat-
terns, from the rest of the team’s behavior, called its
base strategy. The 2005 Coach Competition Rules de-
fine these terms as:

pattern : “a simple behavior that a team performs
which is predictable and exploitable”

base strategy : “the general strategy of the test
team”, independent of any present pattern

Each round of the competition consists of two phases.
In the offline phase, the coach reviews game log files to
construct its pattern models. A log file for a complete
10-minute game contains the positions and velocities of
the ball and every player on the field for each of the
game’s 6000 cycles. High-level events such as passes,
dribbles and shots on goal do not explicitly appear in
the log file, and therefore, can only be inferred from the
positional data.

For each of the 15-20 patterns it must model, the
coach is given two log files: one from a team that dis-
plays the pattern, and another with the same base strat-
egy, but without the pattern present. Each file is la-
beled with the pattern’s name. The coach is given 5
minutes per log file to construct its models and save
their representations to be used in the next phase.

In the online phase, the coach observes a live game
of a team that exhibits an unknown combination of
five patterns from those encountered during the offline
phase. For example, in one of the iterations of the sec-
ond round of the competition, the opponent team ex-
hibited the following patterns:

• Goal keeper moves up and down penalty area

• Sweeper is poorly positioned

• Defenders always clear the ball

• Wing midfielders play too aggressively

• Forwards immediately kick towards goal

When the coach recognizes one of these active pat-
terns, it announces it by sending the pattern’s name
to the simulator. At the end of the game, the coach’s
responses, along with their announcement times, are
entered into a scoring function to rate the coach’s per-
formance. In this metric, more points are awarded for
announcements made earlier in the game. A correct
pattern declared at time, td, earns the coach the fol-
lowing number of points:

(9000 − td) ×
NT − NA

NT

(1)

where NT is the total number of patterns (15–20), and
NA is the number of currently activated patterns (5).
An incorrect pattern declaration, at time td, earns the
coach the following penalty:

9000 − td (2)

This scoring function has the property that the ex-
pected value of random guessing is 0.



During the online phase, the coach is able to control
a team of coachable players to play against the team
to be modeled, by sending advice in a language called
Clang. The behavior of the coachable team can be
“programmed” by issuing Clang instructions that the
players are designed to understand. While the coach is
not evaluated on its team’s playing ability, the coach
may use the team in an attempt to elicit the patterns
in the opponent team.

For our coach, we chose a Clang strategy that we
thought would be most “normal”, in that the team’s
behavior would be close to the types of strategies ex-
hibited by the unmodeled teams in the pattern log files.
Our coach’s Clang rules specify player formations for
before kickoff and during game play. Also, it advises the
defenders to pass to the midfielders and the midfielders
to pass to the forwards. When in the opponent’s half of
the field, our forwards are told to dribble towards the
near end of the opponent’s goal. If any player possesses
the ball within shooting range of the goal, the player is
advised to take a shot.

Modeling Team Behavior

During the course of the competition, the coach must
model three different types of teams. In the offline
phase, for each pattern, the coach must model the team
with the pattern activated, which we call the pattern
team, and the team with the pattern deactivated, which
we call the base team. Lastly, the team modeled during
the online phase is called the online team.

We model all three of these team types by charac-
terizing their behavior with a set of features calculated
from statistics gathered while observing a game. These
features can be characterized as i) the team formation
indicating the general positioning of the agents (e.g.
how many players are defenders or attackers) and ii)
play-by-play statistics indicating the frequency of game
events such as passes, shots, dribbles, etc.

Formation Modeling

As has been noticed by past coach league partici-
pants (Riley, Veloso, & Kaminka 2002; Kuhlmann,
Stone, & Lallinger 2005), one of the most distinguishing
features of a team is its formation. For this reason, we
focused much of our effort on building accurate forma-
tion models.

Our particular formation model was chosen to take
advantage of background knowledge about the teams to
be modeled. In the competition, the behaviors of the
base team, the pattern team, and the online team are
all specified in Clang. In Clang, a player’s position
is described by a rule such as the following:

(say (define (definerule Rule_Home_2 direc
((playm play_onb) (do our {2} (pos ((

(pt ball) * (pt 0.1 0.45)) + (pt -10 10))))))))

This rule instructs player 2 to move to a position cal-
culated from a fixed home position, (−10, 10), and a
ball attraction vector, (0.1, 0.45). The player tends to

stay around its home position, but be attracted towards
the ball in proportion to the magnitude of the x and y
components of the ball attraction vector. If these com-
ponents are close to 0, the player always stays at its
home position. If they are closer to 1, the player tries
to move up and down the field along with the ball.

To learn a team formation model, we estimate the
home positions and ball attraction vectors for each of
the players. The relationship between the ball’s posi-
tion and the player’s position is linear, so we use linear
regression to estimate values. The x and y components
of the position are independent of each other, so they
are learned independently.

In each game cycle, the players’ and ball’s positions
are recorded. For each player, we learn its x model and
its y model. To learn player p’s x model, we use linear
regression to find the parameters ax and hx that mini-
mize the mean-squared error of the following equation:

px = ax × bx + hx

on the recorded data:

< b(1)
x , p(1)

x >,< b(2)
x , p(2)

x >, · · · , < b(n)
x , p(n)

x >

where b
(i)
x is the x-coordinate of the ball and p

(i)
x is the

x-coordinate of player p, both at time i.
The player’s y model is learned in the same way. The

total of four learned parameters constitute the player’s
formation model. The player’s estimated home position
is (hx, hy) and its estimated ball attraction vector is
(ax, ay). We can evaluate the accuracy of the model on
new data by measuring the Euclidean distance between

(p
(i)
x , p

(i)
y ) and (ax × b

(i)
x + hx, ay × b

(i)
y + hy). In other

words, the error edm of a ball attraction model, bamm,
with learned parameters hx, hy, ax and ay on a set of
test data d of size n is:

n∑

i=1

(axb(i)
x + hx − p(i)

x )2 + (ayb(i)
y + hy − p(i)

y )2 (3)

While the ball attraction model works well most of
the time, it does not accurately model the behavior of
the player who is fastest to the ball. Given the velocities
of the players and the ball, the player that is fastest to
the ball is the one that could intercept the ball sooner
than any of its teammates. Because this player typically
leaves its formation to go after the ball, using its data
during this period would add noise to the model. For
this reason, in both training and testing, data for the
player who at that time is fastest to the ball is ignored.

Although this method is motivated by the assump-
tion that Clang is used to describe team behavior,
many past teams have used ball attraction vectors to
determine player positioning (Veloso, Stone, & Bowling
1999; Kok et al. 2003). Thus the approach is likely to
apply more generally to other teams.

Play-by-Play Statistics

In addition to the formation model, we gather addi-
tional statistics to characterize team behavior. Our



coach identifies high-level events from the cycle-by-cycle
positions and velocities of both the players and the ball.
These high-level events include passes, shots on goal,
directed kicks, and directed dribbling. Although many
such features are collected, the 11 player ball attrac-
tion models are the only features that are used in UT
Austin Villa’s model, in part because they work well
and in part due to time constraints leading up to the
competition. An important direction for future work
is to identify which of the remaining collected features
could benefit our model.

After the offline logfile analysis completes, all of the
formation model parameters for each pair of pattern /
base log files are stored to disk in a model file. For both
the base and pattern log files of each of the 15 to 20
patterns, the coach stores 44 formation parameters, 4
for each of the 11 players. After a post-processing step
designed to normalize the comparisons of online teams
against the various patterns (see the section on pattern
normalization below), the model is ready to be used in
the online phase.

Online Pattern Matching
The goal of the offline phase is to build up models of
all the possible opponent patterns that can be observed
during an online game. Whereas the offline training
data can be extensive and the offline computation time
is relatively unconstrained, the online phase requires
identification of the opponents’ weaknesses (patterns)
in real time. The underlying premise is that if the
the coach can quickly identify the opponent team’s
decision-making style, then it will be able to advise its
team regarding what strategy to adopt in response.

During each game of the online phase, the coach iden-
tifies and records positional data and high-level events
exactly as it did in the offline phase to construct an
online model. As in the offline phase, we currently only
use the 11 players’ ball attraction models for pattern
matching. Each of these models is a feature to which
the coach assigns a score from 0 to 1.

At predefined times during the game, the coach calcu-
lates certainty scores for each of the 15 to 20 patterns in
its model file based on how well the current opponent’s
behavior matches the pattern log versus the base log.
For each offline pattern, the coach assigns a score for
each player’s current ball attraction model, such that if
the online formation model is close to that of the pat-
tern, then the score is close to 1. If the online formation
model is closer to that of base strategy, then the score
is closer to 0. The overall (unweighted) score for a pat-
tern is calculated as the sum of the feature scores over
all 11 players for that pattern.

We calculate a single player’s formation model score
for a pattern by determining whether its position data
better matches the model of the pattern team or that
of the associated base team as follows. Given the ball
attraction model, bamb, for the player constructed from
the data in the base logfile, we can calculate the mean-
squared error, ebb, on the training data according to

Equation 3. We do the same for the pattern model,
bamp, to calculate epp.

We then calculate the error, epb, of the base model on
the data from the pattern logfile. Likewise, we find the
error of the base log data on bamp to get ebp. In prac-
tice, since these error values are all based on offline data,
they are actually calculated during the offline phase and
saved in the model file to conserve time online. From
these values, we compute the following ratio, which is a
measure of the difference between the base and pattern
models, relative to their own training errors:

rb,p =
ebp + epb

ebb + epp

(4)

Now, from the data that the coach has collected dur-
ing the online phase, we construct a ball attraction
model bamo and find the mean-squared error, eoo. We
then use the samples from the base strategy file on bamo

to find ebo and vice versa to find eob. Note that this re-
quires us to keep around all of the data from the offline
phase. While it may be possible to approximate the
error well using only part of the data, we found that
there was sufficient time to use the complete data set.

We can now compute how close the current online
game is to the base strategy with the following ratio:

rb,o =
ebo + eob

eoo + ebb

(5)

Likewise, we test bamo on the samples from the pat-
tern log file and vice versa to calculate epo and eop. We
compute rp,o as above. Each of these ratios is greater
than or equal to 1. We can calculate distance values
from these ratios, by simply subtracting one:

dist(b, p) = rb,p − 1

dist(b, o) = rb,o − 1 (6)

dist(p, o) = rp,o − 1

This definition of distance has the property that the
distance of a model to itself is always 0.

Finally, we can calculate the score for this feature as
the percentage distance of the online model to the base
model:

score =
dist(b, o)

dist(b, o) + dist(p, o)
(7)

As intended, if the online model is close to the pattern,
then score = 1. If it’s closer to the base strategy, then
score = 0.

Once we compute the scores for all of the features, we
can sum them to find the overall score for the pattern.
After the coach scores all of the patterns, it ranks them
and declares some of them to be active, based on the
time of the game.

The predefined cycle times for announcement are as
follows. Recall that a 10-minute game lasts for 6000
cycles. At cycle 800, the coach executes the first round
of the scoring procedure. After the roughly 8 or 9 cy-
cles used for scoring, the 2 most certain patterns are



declared. Then, at cycle 2500, the patterns are scored
again and the 3 most certain patterns that have not yet
been declared are announced.

These announcement times were determined empiri-
cally. Since the scoring metric favors early announce-
ments, we pushed up the announcement time as early
as safely possible, without sacrificing accuracy. In in-
formal preliminary experiments, we determined that at
cycle 2500, the top 5 patterns rarely differed signifi-
cantly from the top 5 at cycle 6000 (the end of the
game). Similarly, we found that the top 2 patterns at
cycle 800 were almost always in the top 5 at cycle 2500.

Pattern Normalization

During initial tests of our scoring algorithm, we found
that some patterns would consistently produce much
higher scores (by a factor of 100) than other patterns.
Regardless of which pattern was activated in a test
game, the coach generated very similar pattern rank-
ings. In other words, it thought that all opponents ex-
hibited the same pattern. Thus an absolute ranking of
pattern scores was uninformative. However, the pat-
terns’ relative scores did respond in the correct way by
increasing or decreasing when an online opponent did
or did not exhibit the pattern. To make these relative
responses impact the pattern rankings, we introduced
a method for normalizing pattern scores.

Normalization is performed after log file analysis, in
the time remaining in the offline phase. The coach sim-
ulates numerous online phases to score each pattern
multiple times using the pattern log files in place of
online data. In the competition, each round included
16 pattern log files, one for each pattern. Therefore, a
pattern’s score was calculated for 16 simulated games.
The pattern’s average score was stored as a weight in its
corresponding pattern file. Then, during the real online
phase, the raw pattern score is divided by its weight,
yielding the score used in ranking.

Results

The UT Austin Villa coach won the World Champi-
onship at RoboCup 2005 in Osaka, Japan. However,
technical errors almost kept us from making it to the
final round of the competition. In the first round, the
coach binary crashed, but because only 8 of the 10
registered teams submitted an entry, we were by de-
fault among the top 8 teams to advance. In the second
round, evidence strongly suggested that our normaliza-
tion script failed, which caused our coach to declare
a very similar pattern set in each iteration. Luckily,
its score of -13,199 was high enough to attain fourth
place, barely sufficient to advance. In the final round,
our coach had no major problems and was able to score
the highest of the four remaining teams. Competition
scores from 2nd and 3rd round are shown in Table 1.

Though it’s a positive indicator to win the compe-
tition, in practice, the main purpose of such a com-
petition is to serve as a deadline for completing the

Team Round 2 Score Round 3 Score

UT Austin Villa -13,199 65,841
Aria 18,783 31,178
Kasra 1,750 12,180
Susa 34,700 1,800

Table 1: Total scores in the second and third rounds
of the competition for the top 4 finishers. Each round
score is the sum of 3 game scores.

implementation of a complete autonomous agent capa-
ble of executing all phases together. Since every round
is run only once, nothing can be concluded about the
reproducibility of the results. In order to make any
conclusions with confidence, additional controlled ex-
perimentation is needed.

With that goal in mind, after the competition, we
ran controlled experiments to obtain more complete
data regarding coach performance. We reconstructed
the competition, using the same base and pattern log
files and Clang files. For each round, because the log
files don’t change, the offline phase was run only once.
However, the online phase was run several times. In
each instance, we ran the 3 games that comprised the
3 iterations of the round with the exact Clang used in
the competition.

The results of our post-competition testing are shown
in Table 2. In our experiments, our coach produced a
mean second round score of 48,240 over 5 full-round
tests, with individual scores ranging from 44,400 to
63,600 and a standard deviation of 7,680. Between
rounds 2 and 3, we adjusted our own team’s Clang

advice and the online coach’s pattern declaration times.
In round 2, we found that our players were inactive dur-
ing free kicks, wasting valuable time. To remedy this
problem, prior to round 3, we added a Clang com-
mand instructing our players to kick the ball inbounds
during free kicks. This 3rd round coach was also tested
post-competition on the 2nd round pattern set. It had
very similar results over 10 full-round tests, achieving a
mean score of 45,961 ± 23,855. These results support
our suspicion that the failure of our normalization pro-
cess caused our low 2nd round score in the competition.

In the final round of the competition, our coach per-
formed very well, correctly identifying 7 out of the 14
patterns. Its score of 65,841 was more than double that
earned by the second place team, Aria, which also iden-
tified the patterns correctly but made few announce-
ments. In post-competition testing, UT Austin Villa
averaged 78,680 points over 10 full-round tests, with
individual scores ranging from 39,891 to 139,337 and a
standard deviation of 28,342. We didn’t run the Round
2 coach on the Round 3 data, as this coach is neither the
official version from that round nor our current best.

Adding the lower mean of our round 2 testing and
our round 3 competition results, we earned a total of
111,802 points. In comparison, the combined scores of
the final ranked 2nd, 3rd and 4th teams were 49,961,
13,930, and 36,500, respectively. These results suggest



Coach Version Round 2 Score Round 3 Score

Round 2 48,240 -
Round 3 45,961 78,680

Table 2: Average scores for the current and Round 2
version of the coach on patterns from Round 2 and
Round 3. The scores for the Round 3 coach are av-
eraged over 10 games each. The score of the Round 2
coach on the Round 2 data was averaged over 5 games.

that UT Austin Villa was indeed the rightful champion
of the competition. Our coach appears to be at least as
strong as the competition results indicate. At the same
time, because we do not have as many data points for
the other coaches, it is possible that the competition
results underrepresent their true performance.

Related Work

Some previous work has been done on learning to give
advice to RoboCup simulated soccer players. Riley
et al. (2002) approached advice-giving as an action-
prediction problem. Both offensive and defensive mod-
els were generated using the C4.5 (Quinlan 1993) deci-
sion tree learning algorithm. Their work also stressed
the importance of learned formation advice. Subse-
quently, Kuhlmann et al. (2005) decomposed the prob-
lem similarly, but using different model representations
and advice-generation procedures.

In other work, Riley and Veloso (2002) used Bayesian
modeling to predict opponent movement during set
plays. The model was used to generate adaptive plans
to counter the opponent’s plays. In addition, Riley and
Veloso (2000) have tried to model high-level adversarial
behavior by classifying opponent actions as belonging
to one of a set of predefined behavioral classes. Their
system could classify fixed duration windows of behav-
ior using a set of sequence-invariant action features.

Opponent team modeling has also been studied in
military-like scenarios. In addition to Tambe’s work
mentioned in the introduction (Tambe 1996), Suk-
thankar and Sycara (2005) use HMMs to monitor and
classify human team behavior in a MOUT (military op-
erations in urban terrain) scenario, especially focussing
on sequential team behaviors.

Conclusion and Future Work

The RoboCup simulation coach competition presents a
detailed and challenging domain for autonomous agents
that is specifically geared towards opponent modeling.
UT Austin Villa is a complete and fully implemented
agent that advises a team of soccer-playing agents and
identifies patterns in the opponent teams based on sta-
tistical patterns in their positions over time. Despite
winning the 2005 RoboCup simulation coach competi-
tion, UT Austin Villa leaves much room for improve-
ment. For example, there are many additional potential
features that could boost performance within the same
framework, and the announcement strategy could be

extended to explicitly model the likelihood of correct-
ness relative to the cost in score from waiting longer
to announce. Ultimately, it is important to build on
this work towards a team that is able to exploit the
opponent model on-line as well, both in the coach com-
petition and in other team adversarial domains.

Acknowledgements
This research is supported in part by NSF CAREER award
IIS-0237699.

References
Chen, M.; Foroughi, E.; Heintz, F.; Kapetanakis, S.; Kos-
tiadis, K.; Kummeneje, J.; Noda, I.; Obst, O.; Riley, P.;
Steffens, T.; Wang, Y.; and Yin, X. 2003. Users man-
ual: RoboCup soccer server manual for soccer server ver-
sion 7.07 and later. Available at http://sourceforge.
net/projects/sserver/.

Kitano, H.; Kuniyoshi, Y.; Noda, I.; Asada, M.; Matsub-
ara, H.; and Osawa, E. 1997. RoboCup: A challenge
problem for AI. AI Magazine 18(1):73–85.

Kok, J. R.; de Boer, R.; Vlassis, N.; and Groen, F. 2003.
Towards an optimal scoring policy for simulated soccer
agents. In Kaminka, G. A.; Lima, P. U.; and Rojas, R.,
eds., RoboCup-2002: Robot Soccer World Cup VI. Berlin:
Springer Verlag. 292–299.

Kuhlmann, G.; Stone, P.; and Lallinger, J. 2005. The UT
Austin Villa 2003 champion simulator coach: A machine
learning approach. In Nardi, D.; Riedmiller, M.; and Sam-
mut, C., eds., RoboCup-2004: Robot Soccer World Cup
VIII. Berlin: Springer Verlag. 636–644.

Noda, I.; Matsubara, H.; Hiraki, K.; and Frank, I. 1998.
Soccer server: A tool for research on multiagent systems.
Applied Artificial Intelligence 12:233–250.

Quinlan, J. R. 1993. C4.5: Programs for Machine Learn-
ing. San Mateo, CA: Morgan Kaufmann.

Riley, P., and Veloso, M. 2000. On behavior classifica-
tion in adversarial environments. In Proceedings of the
Seventeenth National Conference on Artificial Intelligence
(AAAI-2000).

Riley, P., and Veloso, M. 2002. Recognizing probabilistic
opponent movement models. In Birk, A.; Coradeschi, S.;
and Tadokoro, S., eds., RoboCup-2001: The Fifth RoboCup
Competitions and Conferences. Berlin: Springer Verlag.

Riley, P.; Veloso, M.; and Kaminka, G. 2002. An empirical
study of coaching. In Asama, H.; Arai, T.; Fukuda, T.;
and Hasegawa, T., eds., Distributed Autonomous Robotic
Systems 5. Springer-Verlag. 215–224.

Stone, P. 2000. Layered Learning in Multiagent Systems:
A Winning Approach to Robotic Soccer. MIT Press.

Sukthankar, G., and Sycara, K. 2005. Automatic recogni-
tion of human team behaviors. In Proceedings of Modeling
Others from Observations, Workshop at the International
Joint Conference on Artificial Intelligence (IJCAI).

Tambe, M. 1996. Tracking dynamic team activity. In
National Conference on Artificial Intelligence(AAAI96).

Veloso, M.; Stone, P.; and Bowling, M. 1999. Anticipation
as a key for collaboration in a team of agents: A case study
in robotic soccer. In Schenker, P. S., and McKee, G. T.,
eds., Proceedings of SPIE Sensor Fusion and Decentral-
ized Control in Robotic Systems II, volume 3839, 134–143.
Bellingham, WA: SPIE.


