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ABSTRACT

Simulation is often used in research and industry as a low
cost, high efficiency alternative to real model testing. Simu-
lation has also been used to develop and test powerful learn-
ing algorithms. However, parameters learned in simulation
often do not translate directly to the application, especially
because heavy optimization in simulation has been observed
to exploit the inevitable simulator simplifications, thus cre-
ating a gap between simulation and application that reduces
the utility of learning in simulation.

This paper introduces Grounded Simulation Learning
(GSL), an iterative optimization framework for speeding up
robot learning using an imperfect simulator. In GSL, a be-
havior is developed on a robot and then repeatedly: 1) the
behavior is optimized in simulation; 2) the resulting behav-
ior is tested on the real robot and compared to the expected
results from simulation, and 3) the simulator is modified, us-
ing a machine-learning approach to come closer in line with
reality. This approach is fully implemented and validated
on the task of learning to walk using an Aldebaran Nao hu-
manoid robot. Starting from a set of stable, hand-coded
walk parameters, four iterations of this three-step optimiza-
tion loop led to more than a 25% increase in the robot’s
walking speed.
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I.2.6 [Artificial Intelligence]: Learning

General Terms

Performance, Design, Experimentation
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1. INTRODUCTION
The fields of robotics and autonomous agents are both

progressing to the point where it is becoming plausible that
before long, robot agents will be commonplace in our every-
day environments. However, the large variety of real-world
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environments will place a large burden on the ability of peo-
ple to generate appropriate skills and behaviors for these
robots.

Machine learning is an enticing alternative to manual gen-
eration of these skills and behaviors, and indeed there have
been some notable successes of such [4, 15, 20]. However,
most learning algorithms require a large number of trials to
be effective on most problems. This fact, coupled with the
fragility of most robots and the time and effort required to
gather data on robots, makes learning on physical robots in-
feasible except in the rare cases in which the behaviors can
be learned in relatively few trials.

When faced with the challenges of learning in the real
world, a natural reaction is to instead learn in simulation.
Simulators facilitate running large numbers of trials with-
out any manual intervention and do not risk breaking any
robots. However, behaviors learned in simulation are no-
toriously difficult to transfer to the real world. Learning
algorithms have a tendency to overfit to the inevitable inac-
curacies and approximations that are inherent in even the
best simulators.

This paper is motivated by a robot learning challenge,
namely enabling a humanoid robot, the Aldebaran Nao, to
walk quickly. This robot is used as the substrate for the
RoboCup Standard Platform League, in which teams of four
robots from different institutions compete against one an-
other in a physical game of soccer. The same robot is the
basis for the physics-based RoboCup 3D-simulator, the sub-
strate for the 3D simulation league in which teams of eleven
robots compete in a simulated game of soccer. Although
there has been at least one example of a robot walk devel-
oped on the physical robot being useful as a starting point
for learning in the simulator [17], we are not aware of any
optimized walks from the simulator being successfully trans-
ferred back to the real world.

This lack of successful transfer from the simulator to the
real robot is unsurprising, due to the simulated model of
the robot being imperfect, and the simulation environment
poorly representing a physical robot soccer field. More im-
portantly, the physics engine in the simulator, while consid-
ered quite good, simply does not produce the same results
as the real world.

We therefore introduce Grounded Simulation Learning
(GSL), a novel, general, iterative optimization paradigm for
learning skills in simulation for a physical robot. Our goal
is to use parameters optimized in simulation to improve the
robot’s task performance in the real world. Each iteration
in GSL begins by grounding the simulation’s movements to



the real world via a machine learning approach. Then, the
parameters are optimized on the grounded simulation, and
the top parameter sets from this optimization are evaluated
on the real robot. Finally, an expert guides the optimization
by selecting parameter sets to investigate further, preferring
ones that perform well on both the simulation and the real
robot, and modifies the optimization algorithm to focus on
promising parameters in the next iteration of GSL. In our
testbed domain, starting from a set of stable, hand-coded
walk parameters, four iterations of GSL led to more than a
25% increase in the robot’s walking speed.

The remainder of this paper is organized as follows. Sec-
tion 2 describes our general methodology. Section 3 pro-
vides background information about our test domain, and
implementation details of GSL are discussed and evaluated
in Section 4. Section 5 provides related works, and Sec-
tion 6 describes unsuccessful strategies we attempted which
are worth mention. Finally, Section 7 concludes.

2. METHODOLOGY
This section describes the problem setting and introduces

the novel Grounded Simulation Learning algorithm.

2.1 Objective and Assumptions
This paper focuses on optimizing a physical robot’s behav-

ior that is influenced by a set of parameters. For example,
this paper considers a parameterized humanoid walk engine
described in Section 3.1.

We assume the following:

1. There is an imperfect simulation of the robot that
permits evaluation of the parameterized behavior via
Fitnesssim. In addition, this function must be modifi-
able in order to make the simulation better match the
real robot’s behavior. If the simulation itself is not eas-
ily modifiable, this modification can be in the form of
changes to the chosen actions of the simulated robot.

2. A small number of evaluations can be run on the real
robot via Fitnessrobot, which evaluates the fitness of the
parameterized behavior.

3. A small number of explorations can be run on the real
robot, via an Explorerobot routine, to collect states and
actions relevant to the current parameterization of the
behavior.

4. There is a supervised learning algorithm, Learn, that
can be used to learn a model of the effects of actions
on state of the real robot. This model will be used to
modify Fitnesssim to make it better reflect the behavior
on the real robot.

5. There is an optimization algorithm, Optimize, that can
be used to find better parameters in simulation.

To clarify, the number of evaluations and explorations re-
quired on the real robot may be orders of magnitude fewer
than the number of evaluations in simulation. In our imple-
menation, for each evaluation on the robot, 150 evaluations
were performed in simulation. We believe that these as-
sumptions are broadly realizable across a large variety of
real robot tasks.

2.2 Grounded Simulation Learning
The Grounded Simulation Learning algorithm (GSL) is

designed to tackle the problem described in the preceding
section. It follows two main principles: grounding and guid-
ance. Grounding refers to trying to make the simulation
of the behavior match the real robot’s behavior in relation
to the parameters of interest. To this end, we try to limit
any differences between the simulator and the real robot
which result in good performance in simulation, but poor
performance on the robot. With adequate grounding, we
may expect the simulation to perform similarly enough to
the robot for the optimization to work. However, in the
large parameter spaces involved in learning robot tasks, this
may be insufficient. Therefore, it is helpful to have an ex-
pert guide the optimization algorithm to focus on specific
parameters.

The full GSL algorithm is described in Algorithm 1. It
takes an initial parameter set P0, as well as the five functions
described in Section 2.1, and produces an approximately op-
timal set of parameters for performing the behavior on the
robot.

Algorithm 1: Grounded Simulation Learning

Input:
P0 – Initial parameter set
Fitnesssim – a simulation fitness function that uses a

model that maps joint commands to outputs
Fitnessrobot – a robot fitness function
Explore

robot
– a robot exploration routine

Learn – a supervised learning algorithm
Optimize – an optimization algorithm to run in

simulation
Output: Popt– Optimized parameter set

// Initialize

1 BestFitness ← Fitnessrobot(P0)
2 OpenParams ← stack((P0,BestFitness))
3 while OpenParams is not empty do

4 p, f ← pop(OpenParams)

// Ground

5 Collect actions,state from running Explore
robot

(p)
6 Model ← Learn(actions,state)

// Optimize

7 ParamSets ← Optimize(Fitnesssim(p,Model))

// Guide

// Update OpenParams and Best

8 foreach p′ in ParamSets do
9 f ′ ← Fitnessrobot(p

′)
10 if f ′ > f then

11 push(OpenParams,(p′, f ′))
12 if f ′ > BestFitness then
13 Popt← p′

14 BestFitness ← f ′

15 Choose parameters to focus on for subsequent
optimization (line 7).

On lines 5–6, GSL learns a new model of the effects of ac-
tions on the robot which is explained in more detail in Sec-
tion 4.3. Then, on line 7, it runs the optimization algorithm
in simulation (discussed in Section 4.2) to find new parame-
ters to investigate. Next, lines 8–14 show how GSL updates



the OpenParams and tracks the best parameters. The idea
of the OpenParams is to keep track of distinct parameters
that perform well on both the robot and simulation. It can
be thought of as tracking tree nodes whose children should
be visited. Finally, in line 15, a human is put into the loop
as a guide in order to speed up the optimization by focus-
ing the optimization on specific parameters to investigate in
greater depth in the next iteration. More information about
guidance is given in Section 4.4. This loop repeats until the
resulting parameters do not improve the robot’s fitness.

3. TESTBED DOMAIN
In order to validate GSL, we implemented and tested it

on a concrete, challenging robot task, namely fast biped
locomotion on an Aldebaran Nao robot, shown in Figure 1.
The Nao is a humanoid robot that stands a little more than
half a meter tall. It has twenty-five degrees of freedom,
eleven of which are in the pelvis and legs. In addition, the
Nao has proprioception of all joints, pressure sensors on its
feet, two gyrometers, and an accelerometer.

Figure 1: Aldebaran Nao.

Section 3.1 describes the parameterized walk engine that
this work optimizes, and Section 3.2 specifies the simulator
used for this work.

3.1 Walk Engine
A walk engine converts a requested walking velocity to a

set of desired joint angles that are sent to the joint motors
at each time step. While the Nao robots come equipped
with Aldebaran’s closed-source walk engine, research from
several RoboCup teams have shown that significantly faster
walks are possible on the Naos [7, 27, 30]. Therefore, we
start from one of the existing walk engines designed by a
RoboCup team. Specifically, the walk engine used in this
work is based on the walk by Nao-Team HTWK from Leipzig
University of Applied Sciences [30], which was in turn in-
spired by Behnke [5]. Due to space constraints, we limit our
attention in this paper to the optimized parameters. Further
details on the walk engine are available in [5].

Specifically, 17 parameters were optimized, a list of which
can be found in Table 1. A phase of the walk is the time
it takes the robot to take two steps (one with the left foot
and one with the right), and it is denoted as the stepPeriod

parameter. A step consists of three components. The first
component is shifting the center of mass onto the stance
leg. Then, the back leg is lifted by bending according to
the knee, vshort, φshort, and ashort parameters. Finally, the
lifted leg is swung forward according to the ampswing, vswing,
and φswing parameters. The fwdOffset parameter is applied

to prevent the robot from drifting forwards when walking in
place. The remaining parameters scale and offset the sensor
values of the gyrometers, which are used as the closed loop
component during the calculations of the three movement
components.

Parameter Description

stepPeriod Number of frames to take two steps.
ampswing Amplitude of the swing calculation.
knee Base of the leg lifting calculation.
startLength Used in calculating initial ramp up.
vshort Factor for the leg lifting calculation.
ashort Amplitude of the leg lifting calculation.
φshort Offset of the leg lifting calculation.
vswing Factor for the swing calculation.
φswing Offset for the swing calculation.
gyrohipPitch Body pitch factor for calculating hip pitch.
gyrokneePitch Body pitch factor for calculating knee pitch.
gyrohipRoll Body roll factor for calculating hip roll.
gyroankleRoll Body roll factor for calculating ankle roll.
scaleroll Scale for sensor value of body roll.
offsetpitch Offset for sensor value of body pitch.
scalepitch Scale for sensor value of body pitch.
fwdOffset Offset to have the robot walk in place.

Table 1: The walk engine parameters examined in this project.

3.2 SimSpark
The RoboCup 3D simulation league uses the SimSpark [2]

multi-agent simulator, which was designed by the RoboCup
initiative. SimSpark uses the Open Dynamics Engine (ODE)
to simulate rigid body dynamics, including collision detec-
tion. Although ODE provides a realistic simulation of physics,
it does make several approximations. For example, there is
no friction model on hinges in ODE, and so no friction acts
on the simulated robot’s joints [1].

Figure 2: Simulated Nao agent.

The physics simulator’s update cycle occurs every 20 mil-
liseconds, at which time it calculates pending events and
sends sensor information to the simulated agent. At that
point, the agent’s behavior code can use the sensor infor-
mation to determine the robot’s next action. To walk, a
request for a walk velocity is sent to the walk engine, which
uses this request and the sensor information to determine
the next desired joint commands. To achieve these joint an-
gles, PID controllers compute torque values that are to be
applied to each joint, and then these torque values are sent
back to the simulator to process. As we have control over
this process, this simulator meets assumption 1 described in
Section 2.1.



The simulated agent, shown in Figure 2, was originally
based on an older model of the Nao, and so some of the
dimensions and masses are different from the physical Nao
robot. Also, some details in the simulated model of the
Nao are greatly approximated. For example, the simulated
robot’s foot is box-shaped, in comparison to the curved
shape of the physical robot’s foot. Additionally, the sur-
face the robot walks on in simulation is completely flat and
smooth, which is a poor representation of the carpeted sur-
face encountered on a real robot soccer field.

4. GSL INSTANTIATION
This section describes how GSL was applied to optimize

the walk speed of a Nao robot. To this end, this section
details how the functions listed in Section 2.1 apply to the
domain described in Section 3.

4.1 Fitness Evaluation
In our Fitnessrobot routine, the robot walks straight for-

wards towards a ball placed on the field as shown in Figure 3.
The robot continually walks forward and turns towards the
ball, in case the walk drifts. The robot walks until its feet
touch the center line of the field, approximately 238 cm away
from the starting location. The velocity of the robot over
this distance serves as the fitness of the parameters, aver-
aged over five trials. If the robot falls or veers too heavily
off course, the trial is run again. We refer to parameters
as stable if they did not result in the robot falling in any
of the five trials. The original walk parameters (P0) were
stable and were measured at a speed of 11.9 cm/s. This
function meets assumption 2 of Section 2.1, allowing for a
small number of evaluations to be run on the real robot.

Figure 3: To evaluate the robot, it was placed in the position
shown in this image and was ordered to walk towards the orange
ball. Once it reached the center line of the field, it was ordered
to stop, at which point it recorded its own walking time.

We used two Fitnesssim routines, both of which were evalu-
ated on the averaged results over 7 runs. The first, denoted
OmniWalk, involves the robot walking through an obstacle
course, described in [17] as the goToTarget task. In this ob-
stacle course, the robot is given a number of destinations to
approach, requiring the robot to walk in all directions and
deal with fast changes of direction. The resulting perfor-
mance is calculated as the sum of the robot’s distances trav-
eled toward the various destinations with a penalty applied
if the simulated robot falls. In the second fitness function,
called WalkFront, the simulated robot walks forward towards
a target for 15 seconds. The forwards velocity during this
time is used as the fitness of the parameters.

4.2 Optimization
In order to optimize parameters in simulation, the Co-

variance Matrix Adaptation Evolution Strategy (CMA-ES)
algorithm was employed as our Optimize function. CMA-ES
was chosen after having found it to perform well when opti-
mizing parameters for similar walking tasks in [31]. This sat-
isfies assumption 5 in Section 2.1. The CMA-ES algorithm
is described in detail by Nikolaus Hansen in [10]. CMA-ES
uses a population based approach with generations similar
to a genetic algorithm. For each generation, CMA-ES pro-
duces a population of parameter samples to evaluate, and
then uses the fitness of the samples to determine which pa-
rameters to try in the next generation. To generate the next
generation, rather than using crossover and mutation as a
genetic algorithm would, CMA-ES tracks a mean and co-
variance matrix of the well-performing parameters to bias
its sampling. At each iteration, the mean is shifted from
its previous position towards the weighted average of some
number of the top valued samples (usually half). The new
covariance matrix is also derived from these top samples,
but it is also adapted based on the trajectory of the mean
over the past few generations. The new distribution is then
re-sampled for the next generation.

The Condor workload management system [28] was used
to distribute the task of evaluating the population across
different machines on the department clusters. Up to 150
jobs can be run simultaneously on our system, and so the
population size was naturally fixed to 150 parameter sets.
The framework reruns samples that fail, regardless of the
reason for failure, until 80% of the trials have completed
successfully, at which point the algorithm can move to the
next generation.

This learning framework is very good at finding parame-
ter values that exploit the fact that the agent is being simu-
lated. For example, to move its joints, the agent calculates
a torque value for each joint that will achieve the desired
joint command. However, there is very little limit on this
torque value, and there is no friction model in the joints.
Therefore, the learning framework will take advantage of
the agent’s ability to move its joints much faster than would
be possible on the real robot. Worse, although the agent is
penalized for falling during the optimization, the real robot
falls more often and is generally less stable than the sim-
ulated one. This problem is likely due to the amount of
noise encountered in the actuation of the joints on the real
robot and the elastisticity of their motion under force. Con-
sequently, it is difficult to force the learning framework to
find a walk optimized for speed that will not cause the real
robot to be unstable and possibly break.

4.3 Grounding
In order to reduce the differences between the robot and

the simulator, we modified the behavior of the robot in sim-
ulation. To this end, this section specifies the Learn and
Explore

robot
routines used in this optimization.

Our Explore
robot

routine collects the state of the robot and
the effects of its actions in a variety of situations. Specifi-
cally, the Explore

robot
routine uses the OmniWalk routine de-

scribed in Section 4.1. However, instead of allowing full
omnidirectional walk motions, the Explore

robot
routine limits

the walk commands to only forwards walking and turning,
and the step size is limited to 67% of the maximum. These
limitations were added to reduce instability on the robot



and reduce wear on the joints. In addition, as the robot
does not have ground-truth knowledge of its position, the
OmniWalk routine is run in simulation, and the requested
walk speeds are recorded. Then, the requested walk speeds
are replayed on the robot, and the states and actions are
recorded. This routine addresses assumption 3 of Section 2.1
and was chosen because it captures a variety of walking sit-
uations, collecting a wide variety of data to be used by the
Learn function.

Our Learn function is a supervised learning algorithm which
outputs a function to predict the effects of actions taken on
the robot (see Section 2.1, assumption 4). The state in our
implementation is the robot’s current joint angles and cen-
ter of mass. The goal is to predict the state of the robot in
the next frame given the current state and the joint com-
mands issued by the walk engine. New joint commands are
generated every 10 milliseconds on the robot, as compared
to every 20 milliseconds in the simulator. As the real robot
operates at twice the frame rate of the simulator, it collects
joint angles on every other frame for each prediction step.
The inputs to Learn are the 11 joints of the legs (5 in each leg
and a shared HipYawPitch joint), a three-dimensional mea-
surement of the center of mass, and the 11 joint commands,
resulting in a 25 dimensional feature vector. The output is
an 11 dimensional vector representing the predicted joint an-
gles that will be reached in the next frame. We ran two full
iterations of OmniWalk , which took a total of ten minutes
and collected approximately 12,000 data points.

We tried a number of supervised learning algorithms for
the Learn function using the open source machine learning
framework Weka [9]. We evaluated these methods for their
runtime and prediction error as shown in Table 2. Following
this evaluation, we chose the M5P tree regression algorithm
due to its good performance and reasonable runtime. A
detailed description of the M5 algorithm can be found in
[22]. The resulting model is a decision tree in which each
leaf uses linear regression to predict the output joint angle.

Class Time(s) RAE(%) RRSE(%)
SimpleLinearRegression 0.35 21.7 25.5
LinearRegression 1.18 16.0 17.6
LeastMedSq 169.0 16.9 19.2
PaceRegression 2.21 15.9 17.5
MultilayerPerceptron 376 12.9 14.2
DecisionStump 1.82 56.8 57.5
M5P 37.3 11.6 16.3
REPTree 3.68 12.4 14.5
IBk 128.9 12.3 16.6
RegressionByDiscretization 20.2 16.7 18.1

Table 2: These regression classes were tested with the joint com-
mand to joint value data using ten fold cross validation. Here only
one joint, HipYawPitch, is presented since this joint was consis-
tently the most inaccurately predicted. RAE stands for relative
absolute error, and RRSE is root relative squared error.

The function generated by Learn is used to transform the
walk engine’s generated joint commands into new joint com-
mands which are converted to torques by PID controllers
and sent to the SimSpark simulator. This method is used
over modifying the simulator itself for the sake of simplicity.
However, directly using the predicted joint angles proved to
be impractical due to the noisy predictions of the model,
compared to the smooth motions requested by the walk en-
gine. This type of jitter makes the walk unstable, often
resulting in the simulated robot falling.

Therefore, we smooth the commands using a linear combi-

nation of the requested joint angles and the predicted joint
angles. To balance this tradeoff, we performed a series of
tests to measure the error difference between the predicted
joint angles and the joint angles achieved in each frame.
The results of these tests indicated that the best combina-
tion used a weight of 0.7 for the requested angles and 0.3 for
the predicted angles.

4.4 Guidance
The work described in the previous section successfully

constrained CMA-ES to select parameter sets which could
be run on the real robot. Many of these parameters were
generated within the first ten generations of optimization.
However, even within these ten generations, many parame-
ter sets had changed enough from the initial parameter set
to cause the robot to become unbalanced, and few param-
eter sets improved the walk speed on the real robot. Even
though the search space was constrained, it was still too
large. Therefore, we tried to guide the optimization to ex-
plore promising parameters and avoid damaging ones.

In addition to selecting which parameters to add to Open-
Params (lines 8–14 of GSL), we guide the optimization by
selecting which parameters to optimize (line 15). Manual
analysis of the performance of the parameter sets reveals
that modifying seven of the parameters left the robot un-
balanced. These parameters are the four gyro parameters
and the scaleroll, offsetpitch, and scalepitch parameters. This
problem is likely due to the inaccuracies in the simulation’s
model of the inertial sensors, which differ greatly from those
used on the robot. Therefore, the expert guided the opti-
mization by removing these parameters for all iterations of
the optimization following the first.

4.5 Results
We ran the GSL algorithm twice, first with OmniWalk for

Fitnesssim, and again with WalkFront. During optimization,
our walk step size was capped at 67% of its original value
for stability. At this step size, the orignal walk speed was
measured at 11.9 cm/s. A summary of the improvement is
shown in Figure 4, and the steps are discussed in greater
depth in the remainder of this section. For visual compar-
ison, videos of the robot walking using both original and
optimized walk parameters can be found online.1

The first run of the GSL algorithm used OmniWalk (de-
scribed in Section 4.1) as the Fitnesssim. For the first iteration
of the algorithm, we tried the optimization with and with-
out the grounding described in Section 4.3. The top one
or two best parameter sets from each of the first ten gen-
erations of CMA-ES optimization in simulation were tested
using Fitnessrobot. Those which showed improvement and had
distinct parameter values were added to OpenParams. We
found several parameter sets which performed better when
optimized with grounding, but no parameter sets optimized
without grounding were consistently stable.

In the second iteration, the seven balance parameters men-
tioned in Section 4.4 were locked for the optimization. In
addition, one parameter in particular, the swing parameter,
appeared to increase the robot’s walk speed. The swing pa-
rameter controls the amplitude of the swinging foot, and vi-

1Video of walking using the original parameters can be
viewed at: http://youtu.be/grlceQkBTxw and walking us-
ing the optimized walk parameters can be viewed at: http:
//youtu.be/nGc127yYoSs



Figure 4: The performance of parameters through iterations of
the GSL algorithm, and the guidance used to achieve these re-
sults.

sual analysis showed that increasing this parameter caused
the robot to swing its lifted foot farther and take larger
steps. Therefore, the optimization was guided by increasing
the initial variance for the swing parameter to be used in the
CMA-ES optimization. This led to a maximum walk speed
of 13.2 cm/s. However, the new parameter sets were not as
stable as the original. In the third iteration, the re-optimized
parameter sets became too unstable to measure.

Therefore, for the second run of GSL, WalkFront was used
as Fitnesssim. As before, we grounded the simulation, re-
moved the seven balance parameters and focused on the
swing parameter. This resulted in a large improvement from
the original parameter set, reaching a speed of 13.8 cm/s.
The optimization did not seem to be stagnating at this point,
so the second iteration repeated the same methodology as
the first, resulting in a walk that moved 14.6 cm/s.

Further investigations at this point indicated that due to
the changes in the robot’s parameter set, the joint models
used in simulation were no longer approximating the walk
on the real robot accurately. Therefore, in the third itera-
tion, the grounding step was repeated with the current best
parameters, and the optimization was repeated. This step
resulted in another large improvement to the walk speed,
reaching 15.9 cm/s.

However, while the walk parameters from the third itera-
tion produced a fast walk, the robot fell periodically. In the
fourth iteration, the grounding and optimization steps were
repeated, but a faster parameter set was not found. Instead,
parameter sets were discovered at a speed of 15.6 cm/s, in
which the robot did not fall at all in our evaluation.

The step size was not initially optimized and was held
at 67% of the maximum because changing its value quickly
led to parameters that were unstable on the real robot but
worked well in simulation. In addition, putting the step size
at its maximum prevented nearby parameter sets from being
stable enough to evaluate. To combat this problem, the op-
timization was guided away from this parameter. However,
since the parameter set found in the fourth iteration was as
stable as the original parameter set, we were able to increase
the step size back to 100%. At this step size, the original
parameter set measured at a walk speed of 13.5 cm/s, while
the optimized parameters measured at 17.1 cm/s, which is
a 26.7% improvement in the walk speed.

5. RELATED WORK
Robotic bipedal locomotion has been a hot topic of re-

search in the robotics community in recent years. Much
of the research in this area uses the concept of the zero-
moment point to predict a stable trajectory for a robot to
follow. Such works include [7], [13], [27], and [32].

There has also been work on using machine learning to
improve robot performance. Several RobotCup teams have
improved the walk speed of the quadrupedal Sony Aibo us-
ing machine learning [15, 24, 14]. More recently, there has
been progress in learning on bipedal robots, including learn-
ing decision tree models to score penalty kicks [11], learning
to walk by demonstration [18], and improving walk stability
by learning from human feedback [19].

Simulation has long been used as a tool for modern re-
search and development. Thomke [29] describes how sim-
ulation has been used for crash testing in the automobile
industry for over a decade. Building real models for crash
testing is much more expensive and time consuming than
building a model in simulation. Additionally, real models
are limited in value because they are often built after the
automobile’s design can no longer be changed and there are
a large number of possible crash scenarios. In these cases,
it is engineers who learn from the simulation and indirectly
apply their findings in real designs.

Many learning algorithms, when first developed, are first
tested in virtual environments. Simulation has been used in
robotics research to develop and test new algorithms such as
path planning models [33]. Also, simulation has been used
in the development of learning algorithms for applications
such as for modeling robots with many sensors and actuators
[21] and, in 1990, for learning evasive maneuvers in flight
simulation [8]. Intuitively, learning in simulation lends itself
well towards active learning, when a database of training
data is not available.

There has also been work on learning to walk in simula-
tion, such as using manifold learning to determine high-level
walking decisions [23]. Our implementation is based on the
framework created by the UT Austin Villa RoboCup 3D sim-
ulation team [17], which produced a fast and stable walk for
the RoboCup 3D simulation league using machine learning.

However, the price of the convenience of simulation is its
inaccuracy. As Gat puts it, “You can’t do science about
robots without firing up a robot” [6]. In his 1995 paper, Gat
claims that in order for simulation to be useful, the results
of simulation must be tested on the real robot. Still, the
question remains on how best to make use of those tests.

Koos et al. [16] made a recent effort to answer this ques-
tion by studying a quantity they labeled “Transferability”,
which is a measure on how well each component of a simu-
lated model’s performance transfers from the simulation to
reality. Trials were run on the real robot during optimization
to estimate transferability. Unlike this project, in which we
made changes to the simulation to increase transferability,
Koos et al. made changes to the optimization’s objective
such that it searches for parameters that improve both fit-
ness and transferability. More examples of using both sim-
ulation and real trials in learning include [3], [34], and [12].

In our approach, the optimization was guided manually
based on human observation. There has been much work
stemming from the concepts of learning from demonstration
[25] and using human feedback as a reward. In addition,
there has been research in using human demonstration to



teach motions to bipedal robots [26] and to teach robots
to walk [18], and there has been research in using human
feedback to improve walk stability [19].

6. ALTERNATIVE APPROACHES
Section 4 describes the method used for applying GSL

to optimize a walk on a humanoid robot. However, other
approaches were attempted as part of this work, and they
are documented in this section.

6.1 Predicting Joint Commands
As described in Section 4.3, to ground the simulator, GSL

learns a model of the dynamics of the joints on the real
robot and uses those models to change the joints commands
in the simulator. This model maps the state of the robot and
the desired next state into a set of commands to be sent to
the joints in the simulator. These commands are then com-
bined with the original commands to create smoother curves.
However, further analysis shows that, in the simulator, the
joints do not exactly reach these desired targets. This dif-
ference is due to the physics of the simulator. Although it is
not entirely realistic, the simulator does have the concept of
torques and momentum, so the requested joint targets are
not always reached.

Therefore, to counteract this problem, we tried to learn a
model that predicts commands to send to the simulator in
order to reach the desired joint targets. To learn this model,
we run a similar technique to the grounding described in
Section 4.3, running an exploration routine in simulation
and storing the same state and action data. Then, a model
was learned through the M5 algorithm. This model allowed
us to predict the commands required to send to the simulator
to achieve the desired targets.

Unfortunately, while this method did achieve its goal, it
did not produce the desired result. The simulated robot
was able to match the expected joint angles with an error
of less than 0.1 radians for every joint on nine out of ten
consecutive frames. However, the joint commands were too
noisy compared to the original joint commands produced by
the walk engine. This noise caused the simulated robot to
fall more often than the real robot, even though it appeared
to be more accurately matching the joint angles observed on
the real robot. This may have been attributed to the error
rate of the joint models and the independence of each joint’s
model from the others.

6.2 Predicting Joints on the Real Robot
In Section 4.3, we describe the method used for ground-

ing the simulator to match the robot’s dynamics in the real
world. This approach focused on learning a model of the ef-
fects of actions, used to modify the simulator. However, an
alternative approach is to instead learn the inverse model,
learning what actions on the robot are required to achieve
the results predicted by the simulator using the M5 learning
algorithm once again. Instead of making the simulator act
like the real robot, it might be possible to make the robot
act similarly to the simulator.

To implement this idea, the robot took the desired angles
produced by the walk engine and calculated the commands
that would be required to meet these targets on the real
robot. To reduce the noise produced by the mapping, the
original and predicted values were combined by the func-
tion 0.6 ∗ original + 0.5 ∗ predicted. However, this approach

reduced the speed of the walk by approximately 30% and
failed to increase the stability of the robot when evaluating
parameters optimized in simulation.

7. CONCLUSION
Using the Grounded Simulation Learning algorithm, ma-

chine learning can be used in simulation to improve the val-
ues of parameters used on a real robot. In this paradigm,
we iteratively ground the simulation, optimize in simula-
tion, evaluate the optimized parameters on the robot, and
use this evaluation to guide the simulation towards fruitful
parameters in the next round of optimization.

This paper introduces GSL and validates it on the task of
increasing the walking speed of a humanoid robot, the Alde-
baran Nao. We grounded the simulation by using machine
learning to build models for expected joint behavior. Test-
ing the output of the optimization iteratively revealed which
parameters were more or less appropriate to optimize. By
focusing on those parameters, parameter sets were learned
that improved the robot’s forward walking speed by over
25%.

There are several avenues for future work in this area, the
first of which is to test GSL on additional robotic tasks.
Another avenue is to consider automating the selection of
which parameters are added to the OpenParams for further
investigation. However, this change may slow down the op-
timization and increase the number of evaluations needed
to run on the robot. Finally, more exploration should be
performed into the possible methods for grounding the sim-
ulation.
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