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ABSTRACT

Although machine learning has improved the rate and ac-
curacy at which robots are able to learn, there still exist
tasks for which humans can improve performance signifi-
cantly faster and more robustly than computers. While
some ongoing work considers the role of human reinforce-
ment in intelligent algorithms, the burden of learning is of-
ten placed solely on the computer. These approaches neglect
the expressive capabilities of humans, especially regarding
our ability to quickly refine motor skills. In this paper,
we propose a general framework for Motion Acquisition for
Robots through Iterative Online Evaluative Training (MAR-
IOnET). Our novel paradigm centers around a human in a
motion-capture laboratory that “puppets” a robot in real-
time. This mechanism allows for rapid motion development
for different robots, with a training process that provides
a natural human interface and requires no technical knowl-
edge. Fully implemented and tested on two robotic plat-
forms (one quadruped and one biped), this paper demon-
strates that MARIOnET is a viable way to directly transfer
human motion skills to robots.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics—Operator inter-

faces, Kinematics and dynamics

General Terms
Human Factors, Design, Experimentation

Keywords
Human-robot/agent interaction, Agent development tech-
niques, tools and environments

1. INTRODUCTION
As robots become more commonplace, the tools to facili-

tate knowledge transfer from human to robot will be vital,
especially for non-technical users. Therefore, when design-
ing autonomous robots that interact with humans, not only
is it important to leverage advances in machine learning, but
it is also useful to have the tools in place to enable direct
transfer of knowledge between man and machine. We in-
troduce such a tool for enabling a human to teach motion
capabilities to a robot.

Specifically, this paper describes a direct and real-time
interface between a human in a motion-capture suit and
a robot. In our framework, the learning happens exclu-
sively by the human - not the robot. Our approach ex-
ploits the rate at which humans are able to learn and re-
fine fine-motor skills [19, 14]. Called MARIOnET, Motion

Acquisition in Robots through Iterative Online Evaluative
Training, the interface has been implemented on two robots
- one quadruped and one humanoid. As the name indicates,
MARIOnET is a form of iterative online evaluative train-
ing. The human performs a motion and the robot mimics
in realtime. The human evaluates the robot’s performance,
and repeats the motion accounting for any errors perceived
in the robot’s previous actions. This loop is continued until
a sufficient motion sequence is obtained.

Our results indicate that humans are able to quickly im-
prove a robot’s performance of a task requiring fine-motor
skills.The primary contribution of this paper is a new paradigm
for directly encoding motion sequences from a human to a
robot. One motivation of our approach is to develop an
efficient method for generating cyclical motion sequences.
We empirically evaluate the rate at which human subjects
learn to exploit a direct robot mapping, and demonstrate
that MARIOnET is a powerful way to harness the cognitive
flexibility of humans for quickly training robots.

The remainder of the paper is organized as follows. Sec-
tion 2 describes our motivation and provides background
information necessary to understand the technical details of
our approach. Section 3 provides a detailed account of the
implementation and training process of MARIOnET. Sec-
tion 4 outlines the hardware used in our evaluation and de-
scribes our experimental results. Section 5 discusses related
work, and finally Section 6 presents our conclusions and pos-
sible future work.

2. MOTIVATION AND BACKGROUND
This section provides detailed motivation for our work,

briefly situates MARIOnET within the learning agents lit-
erature, and describes the underlying technology upon which
MARIOnET is built.

2.1 Motivation
In this paper, we examine a new approach towards robot

motion acquisition through an innovative training paradigm
that exploits a system finely tuned by thousands of years
of biological evolution: the human body. While the process
by which humans are able to learn exceptionally quickly is
not yet fully understood, work being done on the neuro-
logical basis of learning is steadily shedding light on how
we rapidly acquire and apply new knowledge [13]. Recent
breakthroughs in behavioral motor control have enhanced
our understanding of the human brain and illustrate how
remarkable our innate capacity for delicate motor control
is [19]. Muellbacher et al. report that given a 60-minute
training period, human subjects can rapidly optimize per-



formance of a complex task involving fine motor control [14].
The high-level motivation for MARIOnET is that a real-

time mapping from a human to a robot will serve as a con-
venient interface for quickly and systematically training effi-
cient motion sequences. While there is certainly a difference
in the natural dynamics of robots and Homo sapiens, it is
our belief that people’s ability to quickly hone fine motor
skills can be exploited to rapidly train diverse robot mo-
tions. Even if the mapping from human coordinates to robot
coordinates is not exact, we hypothesize that humans will
be able to rapidly learn to correct for any inconsistencies.
Additionally, the prospect of mapping any human limb to
any robot limb allows for a flexible training process (e.g.,
mapping human arms to robot legs).

Our long-term vision is to use MARIOnET to train ro-
bust motions for robots such as walking, running, and kick-
ing. This could be useful in many domains, such as robot
soccer where most people create these behaviors by hand or
via extensive learning experiments using constrained param-
eterizations, causing a lot of wear and tear on the robots [10].
Generally, programming specialized robot motions requires
a significant amount of coding, which is not possible for most
people, and is not necessary when using MARIOnET.

MARIOnET uses real-time mimicking on the part of the
robot because we believe it is essential that the human sub-
ject is able to quickly evaluate the actions of the robot in
order to refine its movement in subsequent training. For
example, imagine the following situation in attempting to
“puppet”a humanoid robot: the human subject realizes that
when training a biped robot to walk, the robot frequently
loses balance and topples forward. The human can try dif-
ferent things to correct this — lengthening of stride, reduc-
tion of knee-bend, etc., all in real time while watching the
robot. Although MARIOnET uses teleoperation to interact
with the robot, it represents a new methodology for knowl-
edge transfer. The central hypothesis of this work is that
humans are skilled enough at fine motor control, that mi-
nor nuances essential for maximizing performance in robot
locomotion (otherwise discoverable only through computa-
tionally expensive and time-consuming exhaustive methods)
may be found with significantly less effort. Furthermore,
since the training process proposed by MARIOnET provides
an intuitive interface requiring no technical knowledge, our
approach facilitates the direct transfer of motor knowledge
from human to robot by any non-technical user.

2.2 ML and HRI
Machine learning (ML), the study of algorithms that im-

prove automatically through experience, has drastically im-
proved the rate at which robots can learn. Recently, ma-
chine learning algorithms have seen great success in train-
ing robots to move quickly and efficiently, and there are
numerous case studies in which ML has been used for on-
line and off-line performance improvement in multi-agent
autonomous robot environments [10, 16].

Human-robot interaction (HRI) examines the principles
and methods by which robots and humans can naturally
communicate and interact. As robots become more im-
mersed in our everyday lives, the ability for non-technical
users to program, train, and interact with these machines
will be vital. Thus, any viable framework for human-robot
interaction should require very little technical knowledge to
use. Additionally, HRI systems should aim to make the

method of communication between robot and human as nat-
ural as possible, namely by providing a convenient interface
for the human [1]. Steinfeld et al. emphasize the need for
any viable human-robot interface to cater to non-technical
users, and state that when testing any interface it is “crit-
ical to recruit subjects having a broad range of knowledge,
experience, and expertise” [20].

2.3 Robot Locomotion
Historically robot motion has been written by experts, and

falls into two main categories; open-loop and closed-loop so-
lutions. In both approaches the the limbs are roughly per-
forming trajectory following, where the trajectory is either
pre-calculated (open-loop) or is calculated based on sensors
and dynamics (closed-loop). Both approaches require sig-
nificant technical knowledge, considerable development time
and neither are suitable for non-technical users.

While machine learning has been applied to learn/optimize
these trajectories [18, 22, 11] there is still a large amount of
code required to initially define the motion sequences, plac-
ing a significant burden on the original robot programmer.

Inverse kinematics (IK) encompasses the task of deter-
mining the joint angles that will move a robot’s limb to a
desired end-effector position given in XYZ coordinates (rel-
ative to the robot’s body). Two main methods exist for
calculating inverse kinematics: a) Jacobian based iterative
approaches [5] and b) Direct trigonometric calculation. In
the work presented in this paper both techniques are used.

On the humanoid robot used in this paper, each leg has six
degrees of freedom. As a result there exist many solutions
to the IK calculation. That is, multiple configurations of the
joints can result in the same end-effector position. For that
reason we use a Jacobian approach to based on a Denavit-
Hartenberg [8] representation of the limbs. This approach
solves for the smallest set of joint movements that result in
the end-effector being within ǫ of the desired location. The
advantage of this approach is that the robot generally does
a good job of reaching any possible location, even getting
as close as possible to impossible ones. The disadvantage
is that often multiple iterations over the inverse kinematics
solver are required, which can be computationally expensive.

On the quadruped robot we use, each leg has only three
degrees of freedom, meaning that in most locations there
exists only one unique solution for the IK calculation. For
that reason a direct trigonometric approach is used, in which
we can accurately determine the three required angles. This
approach is extremely fast to calculate and is ideal for many
robots with relatively low processing power. However, at a
few select locations two solutions exists and the robot can
occasionally oscillate between these solutions. This is gener-
ally not a problem as these limb positions are rarely needed
by the robot.

2.4 Motion Capture
Motion capture is a technique of recording the detailed

movements of a performer, thereby capturing a digital model
of their movements. Motion capture systems may be pas-
sive, where a performer wears reflective materials and light
is generated near the camera, or active, where various LEDs
on the subject’s body emit light which is detected by sur-
rounding cameras. Typically, the LEDs are strobed on and
off very quickly in pre-defined groups, which enables realtime
marker disambiguation by the cameras. State-of-the-art ac-



tive motion capture systems allow for precise representations
of human poses, resulting in a complete digital representa-
tion in Cartesian space.

In this work we use a PhaseSpace IMPULSE active-marker
motion capture system that employs 16 high-sensitivity 12.6
megapixel cameras positioned overhead surrounding a 20
by 20 foot tracking area. A human subject wears a black
virtual-reality body suit, on which 36 LED markers are strate-
gically placed. With a sample rate of 480 Hz and a latency
of less than 10ms, the PhaseSpace IMPULSE system is a
fast and accurate way of capturing even the most subtle of
human movements.

3. MARIONET
This section describes the MARIOnET framework. Sec-

tion 3.1 describes the implementation details of MARIOnET,
and section 3.2 describes the MARIOnET user interface and
training methodology.

3.1 Implementation
MARIOnET has been implemented in two distinct mod-

ules: a) a C++ framework with a custom client to con-
nect to a motion-capture server and b) a generalized motion
module that is directly implemented on each robot. A fully-
functional graphical user interface (GUI) has also been de-
veloped that facilitates training. The motion capture data
is down-sampled and commands can be sent to the robot at
8 - 30 Hz.

We represent each human limb as a vector of points that
can be initialized to a “neutral” position. In this way, we
can precisely represent any human pose by relating the cur-
rent pose to a neutral position. The difference between these
vectors is now transformed to a coordinate system appropri-
ate for a particular robot, and a resulting set of robot joint
positions is generated by calculating a solution to inverse
kinematics. The control flow of our interface can be seen in
Figure 1. An initial configuration procedure correlates the
bounds of each human subject to the bounds of the robot,
and captures a neutral human pose.

The main MARIOnET algorithm (Algorithm 1) will now
be described. Once initialized, the client enters the main
loop and captures the markers from the motion capture
server, decoding each point to a body part based on unique
marker IDs (line 2). The decoded packet is then trans-
formed from the absolute coordinate system of the motion
capture system to a relative coordinate system appropriate
for a robot (line 5). This transformation is accomplished by
calculating a forward-facing vector orthogonal to the plane
created by the human’s torso, and rotating every point in
the pose accordingly. These vectors, now in a relative coor-
dinate system, are scaled down to the robot’s size by consid-
ering the subject’s body size in conjunction with the robot’s
physical bounds (line 6).

After scaling to the appropriate robot coordinate system,
a mapping is applied from human-limb to robot-limb (line
7). It is possible to map limbs one-to-one (for example when
fully controlling a humanoid robot), or one-to-many. For
example, a “trot” gait can be generated for quadrupeds by
mapping the human’s left arm to the robot’s front left and
back right legs, and the human’s right arm to the robot’s
front right and back left legs. The user can select different
mappings through the GUI without the need to recompile
any code. The GUI also includes realtime interactive sliders

Figure 1: Control flow of the MARIOnET Interface

for scaling outgoing robot coordinates. The sliders allow
independent control of the x, y, and z values for both arms
and legs, which are applied after limb mapping (line 8).

During training, it is often useful to have a “looped” mo-
tion sequence. For example, the human could take two steps
and wish the robot to repeat this sequence over and over,
resulting in a continuous gait. To facilitate a natural hu-
man interface, we have implemented hand-gesture recogni-
tion to control the looping state of the robot. Whenever
the human touches his thumb and pinky fingers together,
the robot changes its looping state. There are three looping
states: live capture that is not being recorded, live capture
that is being recorded for looping, and loop playback. Every
time a hand-gesture by the human is detected, MARIOnET

updates an internal looping signal. All encountered loops
are stored, and can be replayed using the GUI or saved di-
rectly as a sequence of joint angles on the robot that can
be called from any high-level behavioral code to reproduce
the looped motion. The lines of Algorithm 1 that deal with
looping are 3-4, 9-10, and 13-15.

Input: config (Individual’s Configuration), mapping
(Desired mapping)

while TRUE do1

pose = getMarkers();2

loopState = handGestureDetected(pose);3

if loopState != LOOPING then4

relPose = absoluteToRelative(pose);5

robotPose = transformToRobot(config);6

robotPose.applyMapping(mapping);7

robotPose.scale(GUI.scalars());8

else9

(relPose, robotPose) = loop.nextFrame();10

end11

sendToRobot(robotPose);12

if loopState == RECORDING then13

loop.add(relPose, robotPose);14

end15

end16

Algorithm 1: Main motion-capture algorithm

At this stage, the MARIOnET client has a complete rep-
resentation of the human’s body that is scaled down to the



robot’s coordinate system and altered to represent a par-
ticular limb mapping. This information is sent to the robot
wirelessly in the form of a packet (line 12), and the algorithm
returns to the start of the main loop.

We now turn our attention to the robot motion algorithm,
which must be implemented for each model of robot that
MARIOnET wishes to communicate with. Pseudocode rep-
resenting a generic robot motion algorithm can be found in
Algorithm 2. Every time the robot receives a packet (line
3), it simply calculates a solution to inverse kinematics for
each limb (lines 4,5), sets corresponding joint angles using
interpolation (line 6), and conveys its current loop state to
the user through speech and LED indicators (line 8).

setPose(INITIAL-POSE);1

while TRUE do2

robotPose = getLatestCommand();3

foreach Effector e ∈ robotPose do4

[
−→
Θ ] = solveInvKin(e);5

interpolateJoints(e,
−→
Θ);6

end7

conveyLoopState();8

end9

Algorithm 2: Robot motion control algorithm

3.2 Training and Interface
The MARIOnET GUI allows viewing of both human and

robot kinematics. The GUI supports realtime tuning of
mapping scalars, and provides a mechanism for recording
motion sequences for later use. For example, if the human
notices that the robot’s arms are always “too close” to the
front of its body, the user can simply increase the x-direction
scalar of the arms through the GUI.

The training process works best with two people: one con-
trolling the MARIOnET GUI and one in the motion-capture
suit. The first step in training is creating a configuration file
for the human, which is generated by prompting the trainer
to successively place their arms at their sides, fully extended
forward, fully extended to the sides, and fully extended up-
ward. This process initializes mapping scalars which cor-
relate to the corresponding physical bounds of the robot.
The first author of this paper controlled the GUI for all of
the training sessions. After initialization, the human and
robot are synchronized and live motion-capture data is sent
to the robot. The training process is as follows: the hu-
man performs a motion, which can be seen through realtime
mimicking by the robot. The human evaluates the robot’s
performance, and repeats the motion accounting for per-
ceived error in the robot’s previous actions. This loop is
continued until a satisfactory motion sequence is obtained.

4. EXPERIMENTS AND RESULTS
In this section, we describe various experiments that eval-

uate the effectiveness of our approach. First, we outline
the robot hardware used in the current implementation of
MARIOnET. Then, we analyze the use of MARIOnET for
an episodic closed-loop task using the Nao. Finally, we show
that our approach is also useful for capturing cyclical open-
loop motions, such as walking, using the AIBO. This section
primarily evaluates the ease of the training interface and as-
sesses the ability of a human to quickly improve at a task
involving fine-motor control.

4.1 Experimental Robot Platforms
4.1.1 Sony AIBO

The AIBO is a sophisticated quadruped robot that was
mass produced by Sony from 1999 to 2006 (see Figure 3).
The ERS-7 model (used in these experiments) has an inter-
nal 64-bit RISC processor with a clock speed of 576MHz.
The robot has 20 degrees of freedom: 3 in the head, 1 in
each ear, 1 in the chin, 3 in each leg, and 2 in the tail.
The robot also contains a 802.11 wireless card that enables
external communication.

4.1.2 Aldebaran Nao

We have also implemented MARIOnET on a humanoid
robot called the Nao (see Figure 2). Developed by Alde-
baran Robotics, the Nao recently replaced the AIBO as the
robot for the RoboCup Standard Platform League. The
Nao contains an AMD Geode 500Mhz processor, 256MB of
memory, and includes 802.11 wireless capabilities. Measur-
ing at 23 inches and just under 9.6 pounds, the The Nao
has 21 degrees of freedom and body proportions similar to
that of a human. Each foot of the robot contains four force-
sensitive resistors, and the Nao houses an integrated inertial
measurement unit with a two-axis gyrometer and three-axis
accelerometer.

4.2 Humanoid Tasks
Eight volunteers served as test subjects, and each subject

completed a 45 to 90 minute interactive training session with
the Nao. Our test subjects consisted of three technical users
and five non-technical users.

The setup of our episodic task, Car-Park, can be seen in
Figure 2(a). The robot stands in front of a surface with two
distinct boxes — a source and a sink. The human stands
behind the robot and attempts to guide the robot to move
a toy car from the source to the sink. The robot starts with
both arms at its sides, and the task is completed when all of
the car’s wheels reside inside the bounds of the sink. If the
car is knocked off the surface, the subject is given a three
second penalty.

The test subjects performed 60 iterations of Car-Park.
For the first 10 episodes, the average time to completion was
28.5 seconds - for the last 10 episodes the average was 6.8
seconds. As can be seen in Figure 2(b) the learning curve
representing elapsed time to complete Car-Park decreases
significantly over 60 iterations. The entire training session
took less than 1 hour, and the subjects decreased their aver-
age completion time by a factor greater than 4. This exper-
iment helps verify our hypothesis that humans can quickly
learn to control robots via the MARIOnET interface.

The solution for Car-Park that every user eventually con-
verged on was to use both arms - one to nudge the car and
the other to stop it at the correct location. This coordinated
sequence is the type of motion that might have taken a stan-
dard ML algorithm a long time to find, and would certainly
require significant exploration of the state space.

4.3 Quadruped Locomotion
While the Car-Park experiment is a closed loop control

task in which the human continually controls the robot, we
envision MARIOnET ’s main usefulness being in generating
open loop control sequences such as periodic gaits. Due
to the current fragility of the Nao robots, we limited our
locomotion tests to the quadruped platform.



(a) Experiment Setup

(b) Results

Figure 2: Experimental setup of Car-Park and av-

erage learning curve of 60 iterations

Six volunteers served as test subjects in evaluating the ef-
fectiveness of MARIOnET for quadruped locomotion, again
consisting of both technical and non-technical users (3 tech-
nical, 3 non-technical). Due to physical limitations of the
body suit, a “crawling”motion by the human was infeasible,
because marker visibility on the front of the body suit is
critical for coordinate transformations and limb detection.
Therefore, we flipped the problem, and the human, upside-
down. Each subject laid on his back, and each human limb
was mapped to the corresponding robot effector. The task
was to get the AIBO to walk one meter.

Four of the test subjects were able to get the robot to walk
one meter at least once during a 20 minute training period.
The training position with the human on his back is some-
what strenuous, and the other two subjects eventually gave
up. However, the four successful subjects exhibited dramatic
improvement in walk speed over the course of their sessions.
Generally, the subjects had a “moment of clarity”, in which
they found the correct general trajectory to achieve robot
stability. After finding this stable region, the users simply
adjusted various aspects of their motion and evaluated any
changes on the robot. A learning curve consisting of eight
iterations can be seen in Figure 4. While half of the indi-
viduals successfully made use of the looping mechanism, the
other half preferred to control the robot in real-time for the
duration of the task.

Interestingly, the two users unable to produce a walk were

Figure 3: An example training session using the

Sony AIBO

both technically inclined (computer scientists). All non-
technical subjects achieved a steep learning curve, indicating
that technical expertise is not needed to use MARIOnET.
The fastest looped walk achieved a velocity of 18.8 cm/s, and
the subject had only trained for 17 minutes before achiev-
ing this speed. To put this number in context, some of the
fastest AIBO walks found through optimization algorithms
are in excess of 34 cm/s[17], while the standard walk Sony
includes with the AIBO is 3.2cm/s. However, most parame-
ter optimization techniques start with a decent hand-coded
walk, while MARIOnET starts from scratch. It should be
noted that the output of the MARIOnET learning could be
used as the starting point for these optimizations.

Figure 4: Learning curves of 8 iterations by the four

successful subjects

The first time a subject controls a robot, it takes approxi-
mately 1 minute to tune the interactive scalars to appropri-
ate values, which correlates a comfortable human pose to a
stable robot pose. A video illustrating both robots in action
can be found at
www.cs.utexas.edu/~AustinVilla/?p=research/marionet.

5. RELATEDWORK
Learning from demonstration (LfD, or imitation learning)

is a process in which a robot attempts to learn a task by ob-
serving a demonstration, typically performed by a human.
LfD is a promising way of transferring knowledge from agent
to agent, and work by Dautenhahn and Nehaniv illustrates
how many animals use this technique to learn new skills [7].
A good deal of recent work in LfD indicates that using hu-
man feedback as a reward signal to a reinforcement learning
or policy-search algorithm can significantly improve learn-
ing speed [21, 9, 6, 2]. These studies illustrate the impor-



tance of harnessing human-robot interfaces in order to “de-
sign algorithms that support how people want to teach and
simultaneously improve the robot’s learning behavior” [21].
Thomaz and Breazeal coin this paradigm “Socially guided
machine learning”, where the benefits of machine learning
are combined with the intuitive knowledge of humans.

Breazeal and Scassellati posit that there are four inte-
gral questions to consider when designing a system that
uses learning from demonstration [4]: a) How does the robot
know when to imitate? b) How does the robot know what
to imitate? c) How does the robot map observed action
into behavior? d) How does the robot evaluate its behavior,
correct errors, and recognize when it has achieved its goal?

Our system bypasses the first two questions, as the robot
imitates the human in real-time. The robot maps observed
actions into behaviors using a deterministic scaling function
that can be augmented by the user. Finally, while our robot
does not currently evaluate its own behavior, we touch on
this question in Section 6.

Although motion-capture data has been harnessed to im-
prove robot locomotion, to the best of our knowledge, no
real-time human-robot interface using motion-capture has
ever been utilized in the way MARIOnET proposes. Recent
work by Kulic, Takano, and Nakamura introduced a system
using incremental learning of “human motion pattern primi-
tives” by observation of motion-capture data [12]. Addition-
ally, Nakanishi et al. have presented a framework for learn-
ing bipedal locomotion using dynamical movement primi-
tives based on non-linear oscillators, using motion-capture
data as input [15]. While these approaches are based on a
similar motivation of using human motion to train robots,
MARIOnET ’s real-time interface provides a direct route of
controlling the pose of a robot.

6. CONCLUSIONS AND FUTUREWORK
While the similarities of human movement and robot lo-

comotion have been investigated [3], our idea of exploiting
human motor skills for efficient learning of robot locomotion
takes a completely new approach. We control the motion of a
robot not by modeling its dynamics or tweaking parameters
of a machine learning algorithm, but by taking advantage of
the most finely-tuned and sophisticated control mechanism
known to man: himself.

As more robots appear with complex body dynamics, it is
vital that interaction is possible for all types of users, both
technical and non-technical. However, it is very difficult to
systematically construct motion controllers that exploit the
specific properties of a robot, even for a roboticist. Our
experiments suggest that all types of subjects are able to
successfully use MARIOnET, as the non-technical users were
able to intuitively grasp the interface. This approach allows
the layman to precisely develop specialized robot motions.

In this first specification of MARIOnET, we have laid the
groundwork for much future work. As mentioned earlier,
MARIOnET abstracts the task of learning away from the
robot and places this burden on the human. Although our
results indicate that this approach is viable, a more robust
set of problems could be approached and optimized if the
robot and human learned in harmony. Three of the four
“integral questions” for LfD proposed by Breazeal and Scas-
sellati [4] are naturally answered by MARIOnET, while the
fourth requires the robot to reason about its actions. Using
the effective combination of human reinforcement and ma-

chine learning, we plan to address this important question
in future work.
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